GaN MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition

被引:129
作者
Yue, Yuanzheng [1 ]
Hao, Yue [1 ]
Zhang, Jincheng [1 ]
Ni, Jinyu [1 ]
Mao, Wei [1 ]
Feng, Qian [1 ]
Liu, Linjie [1 ]
机构
[1] Xidian Univ, Sch Microelect, Key Lab Minist Educ Wide Band Gap Semicond Mat &, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Al2O3 and HVO2; atomic layer deposition (ALD); interfacial passivation layer (IPL); metal-oxide-semiconductor high-electron mobility transistor (MOS-HENIT); stack gate;
D O I
10.1109/LED.2008.2000949
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We have developed a novel AlGaN/GaN metal-oxide-semiconductor high-electron mobility transistor using a stack gate HfO2/Al2O3 structure grown by atomic layer deposition. The stack gate consists of a thin HfO2 (30-angstrom) gate dielectric and a thin Al2O3 (20-angstrom) interfacial passivation layer (IPL). For the 50-angstrom stack gate, no measurable C-V hysteresis and a smaller threshold voltage shift were observed, indicating that a high-quality interface can be achieved using a Al2O3 IPL on an AlGaN substrate. Good surface passivation effects of the Al2O3 IPL have also been confirmed by pulsed gate measurements. Devices with 1-mu m gate lengths exhibit a cutoff frequency (f(T)) of 12 GHz and a maximum frequency of oscillation (f(MAX)) of 34 GHz, as well as a maximum drain current of 800 mA/mm and a peak transconductance of 150 mS/mm, whereas the gate leakage current is at least six orders of magnitude lower than that of the reference high-electron mobility transistors at a positive gate bias.
引用
收藏
页码:838 / 840
页数:3
相关论文
共 15 条
[1]   Selectively doped high-power AlGaN/InGaN/GaN MOS-DHFET [J].
Adivarahan, V. ;
Gaevski, M. ;
Koudymov, A. ;
Yang, J. ;
Simin, G. ;
Khan, M. Asif .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (03) :192-194
[2]  
ASIFKHAN M, 2000, IEEE ELECTR DEVICE L, V21, P63
[3]   Advanced high-κ dielectric stacks with polySi and metal gates:: Recent progress and current challenges [J].
Gusev, E. P. ;
Narayanan, V. ;
Frank, M. M. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2006, 50 (4-5) :387-410
[4]  
Hao Yue, 2007, Chinese Journal of Semiconductors, V28, P1674
[5]   Si3N4/AlGaN/GaN-metal-insulator-semiconductor heterostructure field-effect transistors [J].
Hu, X ;
Koudymov, A ;
Simin, G ;
Yang, J ;
Khan, MA ;
Tarakji, A ;
Shur, MS ;
Gaska, R .
APPLIED PHYSICS LETTERS, 2001, 79 (17) :2832-2834
[6]   AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrates [J].
Khan, MA ;
Hu, X ;
Tarakji, A ;
Simin, G ;
Yang, J ;
Gaska, R ;
Shur, MS .
APPLIED PHYSICS LETTERS, 2000, 77 (09) :1339-1341
[7]   High-power SiO2/AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors -: art. no. 143501 [J].
Kordos, P ;
Heidelberger, G ;
Bernát, J ;
Fox, A ;
Marso, M ;
Lüth, H .
APPLIED PHYSICS LETTERS, 2005, 87 (14) :1-3
[8]   Metal-oxide-semiconductor devices using Ga2O3 dielectrics on n-type GaN [J].
Lee, CT ;
Chen, HW ;
Lee, HY .
APPLIED PHYSICS LETTERS, 2003, 82 (24) :4304-4306
[9]   Low refractive index Si nanopillars on Si substrate [J].
Lin, Gong-Ru ;
Chang, Ya-Chung ;
Liu, En-Shao ;
Kuo, Hao-Chung ;
Lin, Huang-Shen .
APPLIED PHYSICS LETTERS, 2007, 90 (18)
[10]  
LIU C, 2006, APPL PHYS LETT, V88, P173