Metal-organic framework with optimally selective xenon adsorption and separation

被引:369
作者
Banerjee, Debasis [1 ]
Simon, Cory M. [2 ]
Plonka, Anna M. [3 ]
Motkuri, Radha K. [4 ]
Liu, Jian [4 ]
Chen, Xianyin [5 ]
Smit, Berend [2 ,6 ]
Parise, John B. [3 ,5 ,7 ]
Haranczyk, Maciej [8 ,9 ]
Thallapally, Praveen K. [1 ]
机构
[1] Pacific NW Natl Lab, Phys & Computat Sci Directorate, Richland, WA 99352 USA
[2] Univ Calif Berkeley, Dept Chem & Biochem Engn, Berkeley, CA 94720 USA
[3] SUNY Stony Brook, Dept Geosci, Stony Brook, NY 11794 USA
[4] Pacific NW Natl Lab, Energy & Environm Directorate, Richland, WA 99352 USA
[5] SUNY Stony Brook, Dept Chem, Stony Brook, NY 11794 USA
[6] EPFL, Inst Sci & Ingn Chim, Rue Ind 17, CH-1951 Sion, Switzerland
[7] Brookhaven Natl Lab, Photon Sci, Upton, NY 11973 USA
[8] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94720 USA
[9] IMDEA Mat Inst, C Eric Kandel 2, Madrid 28906, Spain
来源
NATURE COMMUNICATIONS | 2016年 / 7卷
基金
美国国家科学基金会;
关键词
NOBLE-GAS ADSORPTION; COMMENSURATE ADSORPTION; HYDROCARBON ADSORPTION; FORCE-FIELD; RARE-GASES; ENERGY; CAPTURE; DESIGN; KR; XE;
D O I
10.1038/ncomms11831
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Nuclear energy is among the most viable alternatives to our current fossil fuel-based energy economy. The mass deployment of nuclear energy as a low-emissions source requires the reprocessing of used nuclear fuel to recover fissile materials and mitigate radioactive waste. A major concern with reprocessing used nuclear fuel is the release of volatile radionuclides such as xenon and krypton that evolve into reprocessing facility off-gas in parts per million concentrations. The existing technology to remove these radioactive noble gases is a costly cryogenic distillation; alternatively, porous materials such as metal-organic frameworks have demonstrated the ability to selectively adsorb xenon and krypton at ambient conditions. Here we carry out a high-throughput computational screening of large databases of metal-organic frameworks and identify SBMOF-1 as the most selective for xenon. We affirm this prediction and report that SBMOF-1 exhibits by far the highest reported xenon adsorption capacity and a remarkable Xe/Kr selectivity under conditions pertinent to nuclear fuel reprocessing.
引用
收藏
页数:7
相关论文
共 56 条
[51]  
Wilmer CE, 2012, NAT CHEM, V4, P83, DOI [10.1038/NCHEM.1192, 10.1038/nchem.1192]
[52]   Commensurate Adsorption of Hydrocarbons and Alcohols in Microporous Metal Organic Frameworks [J].
Wu, Haohan ;
Gong, Qihan ;
Olson, David H. ;
Li, Jing .
CHEMICAL REVIEWS, 2012, 112 (02) :836-868
[53]   A flexible zinc tetrazolate framework exhibiting breathing behaviour on xenon adsorption and selective adsorption of xenon over other noble gases [J].
Xiong, Shunshun ;
Liu, Qiang ;
Wang, Qian ;
Li, Wei ;
Tang, Yuanming ;
Wang, Xiaolin ;
Hu, Sheng ;
Chen, Banglin .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (20) :10747-10752
[54]   Reticular synthesis and the design of new materials [J].
Yaghi, OM ;
O'Keeffe, M ;
Ockwig, NW ;
Chae, HK ;
Eddaoudi, M ;
Kim, J .
NATURE, 2003, 423 (6941) :705-714
[55]  
Ying R.T., 2013, Gas Separation by Adsorption Processes
[56]   Introduction to Metal-Organic Frameworks [J].
Zhou, Hong-Cai ;
Long, Jeffrey R. ;
Yaghi, Omar M. .
CHEMICAL REVIEWS, 2012, 112 (02) :673-674