Multimodal biomedical AI

被引:463
作者
Acosta, Julian N. [1 ]
Falcone, Guido J. [1 ]
Rajpurkar, Pranav [2 ]
Topol, Eric J. [3 ]
机构
[1] Yale Sch Med, Dept Neurol, New Haven, CT USA
[2] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[3] Scripps Res, Scripps Res Translat Inst, La Jolla, CA 92037 USA
关键词
UK BIOBANK; HEALTH-CARE; BIG DATA; CLINICAL-TRIALS; PLATFORM; FUSION; TECHNOLOGY; PREDICTION; MEDICINE; COVID-19;
D O I
10.1038/s41591-022-01981-2
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Multimodal artificial intelligence models could unlock many exciting applications in health and medicine; this Review outlines the most promising uses and the technical pitfalls to avoid. The increasing availability of biomedical data from large biobanks, electronic health records, medical imaging, wearable and ambient biosensors, and the lower cost of genome and microbiome sequencing have set the stage for the development of multimodal artificial intelligence solutions that capture the complexity of human health and disease. In this Review, we outline the key applications enabled, along with the technical and analytical challenges. We explore opportunities in personalized medicine, digital clinical trials, remote monitoring and care, pandemic surveillance, digital twin technology and virtual health assistants. Further, we survey the data, modeling and privacy challenges that must be overcome to realize the full potential of multimodal artificial intelligence in health.
引用
收藏
页码:1773 / 1784
页数:12
相关论文
共 177 条
[21]   DSM-5 and RDoC: progress in psychiatry research? [J].
Casey, B. J. ;
Craddock, Nick ;
Cuthbert, Bruce N. ;
Hyman, Steven E. ;
Lee, Francis S. ;
Ressler, Kerry J. .
NATURE REVIEWS NEUROSCIENCE, 2013, 14 (11) :810-814
[22]   Recurrent Neural Networks for Multivariate Time Series with Missing Values [J].
Che, Zhengping ;
Purushotham, Sanjay ;
Cho, Kyunghyun ;
Sontag, David ;
Liu, Yan .
SCIENTIFIC REPORTS, 2018, 8
[23]   Machine Learning and Prediction in Medicine - Beyond the Peak of Inflated Expectations [J].
Chen, Jonathan H. ;
Asch, Steven M. .
NEW ENGLAND JOURNAL OF MEDICINE, 2017, 376 (26) :2507-2509
[24]   China Kadoorie Biobank of 0.5 million people: survey methods, baseline characteristics and long-term follow-up [J].
Chen, Zhengming ;
Chen, Junshi ;
Collins, Rory ;
Guo, Yu ;
Peto, Richard ;
Wu, Fan ;
Li, Liming .
INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2011, 40 (06) :1652-1666
[25]   Tutorial: a guide to performing polygenic risk score analyses [J].
Choi, Shing Wan ;
Mak, Timothy Shin-Heng ;
O'Reilly, Paul F. .
NATURE PROTOCOLS, 2020, 15 (09) :2759-2772
[26]   Identifying acute exacerbations of chronic obstructive pulmonary disease using patient-reported symptoms and cough feature analysis [J].
Claxton, Scott ;
Porter, Paul ;
Brisbane, Joanna ;
Bear, Natasha ;
Wood, Javan ;
Peltonen, Vesa ;
Della, Phillip ;
Smith, Claire ;
Abeyratne, Udantha .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[27]   Implementation of a multisite, interdisciplinary remote patient monitoring program for ambulatory management of patients with COVID-19 [J].
Coffey, Jordan D. ;
Christopherson, Laura A. ;
Glasgow, Amy E. ;
Pearson, Kristina K. ;
Brown, Julie K. ;
Gathje, Shelby R. ;
Sangaralingham, Lindsey R. ;
Carmona Porquera, Eva M. ;
Virk, Abinash ;
Orenstein, Robert ;
Speicher, Leigh L. ;
Bierle, Dennis M. ;
Ganesh, Ravindra ;
Cox, Debra L. ;
Blegen, R. Nicole ;
Haddad, Tufia C. .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[28]   The health digital twin: advancing precision cardiovascular medicine [J].
Coorey, Genevieve ;
Figtree, Gemma A. ;
Fletcher, David F. ;
Redfern, Julie .
NATURE REVIEWS CARDIOLOGY, 2021, 18 (12) :803-804
[29]   Patients With High Genome-Wide Polygenic Risk Scores for Coronary Artery Disease May Receive Greater Clinical Benefit From Alirocumab Treatment in the ODYSSEY OUTCOMES Trial [J].
Damask, Amy ;
Steg, P. Gabriel ;
Schwartz, Gregory G. ;
Szarek, Michael ;
Hagstroem, Emil ;
Badimon, Lina ;
Chapman, M. John ;
Boileau, Catherine ;
Tsimikas, Sotirios ;
Ginsberg, Henry N. ;
Banerjee, Poulabi ;
Manvelian, Garen ;
Pordy, Robert ;
Hess, Sibylle ;
Overton, John D. ;
Lotta, Luca A. ;
Yancopoulos, George D. ;
Abecasis, Goncalo R. ;
Baras, Aris ;
Paulding, Charles .
CIRCULATION, 2020, 141 (08) :624-636
[30]   Federated learning for predicting clinical outcomes in patients with COVID-19 [J].
Dayan, Ittai ;
Roth, Holger R. ;
Zhong, Aoxiao ;
Harouni, Ahmed ;
Gentili, Amilcare ;
Abidin, Anas Z. ;
Liu, Andrew ;
Costa, Anthony Beardsworth ;
Wood, Bradford J. ;
Tsai, Chien-Sung ;
Wang, Chih-Hung ;
Hsu, Chun-Nan ;
Lee, C. K. ;
Ruan, Peiying ;
Xu, Daguang ;
Wu, Dufan ;
Huang, Eddie ;
Kitamura, Felipe Campos ;
Lacey, Griffin ;
de Antonio Corradi, Gustavo Cesar ;
Nino, Gustavo ;
Shin, Hao-Hsin ;
Obinata, Hirofumi ;
Ren, Hui ;
Crane, Jason C. ;
Tetreault, Jesse ;
Guan, Jiahui ;
Garrett, John W. ;
Kaggie, Joshua D. ;
Park, Jung Gil ;
Dreyer, Keith ;
Juluru, Krishna ;
Kersten, Kristopher ;
Rockenbach, Marcio Aloisio Bezerra Cavalcanti ;
Linguraru, Marius George ;
Haider, Masoom A. ;
AbdelMaseeh, Meena ;
Rieke, Nicola ;
Damasceno, Pablo F. ;
Silva, Pedro Mario Cruz E. ;
Wang, Pochuan ;
Xu, Sheng ;
Kawano, Shuichi ;
Sriswasdi, Sira ;
Park, Soo Young ;
Grist, Thomas M. ;
Buch, Varun ;
Jantarabenjakul, Watsamon ;
Wang, Weichung ;
Tak, Won Young .
NATURE MEDICINE, 2021, 27 (10) :1735-+