Vectorial reconstruction of retinal blood flow in three dimensions measured with high resolution resonant Doppler Fourier domain optical coherence tomography

被引:63
作者
Michaely, Roland [1 ]
Bachmann, Adrian H. [1 ]
Villiger, Martin L. [1 ]
Blatter, Cedric [1 ]
Lasser, Theo [1 ]
Leitgeb, Rainer A. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Opt Biomed, CH-1015 Lausanne, Switzerland
关键词
optical coherence tomography; Doppler; Fourier domain; retinal blood flow;
D O I
10.1117/1.2771553
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Resonant Doppler Fourier domain optical coherence tomography (FDOCT) is a functional imaging tool for extracting tissue flow. The method is based on the effect of interference fringe blurring in spectrometer-based FDOCT, where the path difference between structure and reference changes during camera integration. If the reference path length is changed in resonance with the Doppler frequency of the sample flow, the signals of resting structures will be suppressed, whereas the signals of blood flow are enhanced. This allows for an easy extraction of vascularization structure. Conventional flow velocity analysis extracts only the axial flow component, which strongly depends on the orientation of the vessel with respect to the incident light. We introduce an algorithm to extract the vessel geometry within the 3-D data volume. The algorithm calculates the angular correction according to the local gradients of the vessel orientations. We apply the algorithm on a measured 3-D resonant Doppler dataset. For validation of the reproducibility, we compare two independently obtained 3-D flow maps of the same volunteer and region. (C) 2007 Society of Photo-Optical Instrumentation Engineers.
引用
收藏
页数:7
相关论文
共 26 条
[1]   LEAST-SQUARES FITTING OF 2 3-D POINT SETS [J].
ARUN, KS ;
HUANG, TS ;
BLOSTEIN, SD .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1987, 9 (05) :699-700
[2]   Resonant Doppler flow imaging and optical vivisection of retinal blood vessels [J].
Bachmann, Adrian H. ;
Villiger, Martin L. ;
Blatter, Cedric ;
Lasser, Theo ;
Leitgeb, Rainer A. .
OPTICS EXPRESS, 2007, 15 (02) :408-422
[3]   Spectral-domain phase microscopy [J].
Choma, MA ;
Ellerbee, AK ;
Yang, CH ;
Creazzo, TL ;
Izatt, JA .
OPTICS LETTERS, 2005, 30 (10) :1162-1164
[4]   Doppler-angle measurement in highly scattering media [J].
Davé, DP ;
Milner, TE .
OPTICS LETTERS, 2000, 25 (20) :1523-1525
[5]   Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography [J].
de Boer, JF ;
Cense, B ;
Park, BH ;
Pierce, MC ;
Tearney, GJ ;
Bouma, BE .
OPTICS LETTERS, 2003, 28 (21) :2067-2069
[6]   MEASUREMENT OF INTRAOCULAR DISTANCES BY BACKSCATTERING SPECTRAL INTERFEROMETRY [J].
FERCHER, AF ;
HITZENBERGER, CK ;
KAMP, G ;
ELZAIAT, SY .
OPTICS COMMUNICATIONS, 1995, 117 (1-2) :43-48
[7]   The impact of ocular blood flow in glaucoma [J].
Flammer, J ;
Orgül, S ;
Costa, VP ;
Orzalesi, N ;
Krieglstein, GK ;
Serra, LM ;
Renard, JP ;
Stefánsson, E .
PROGRESS IN RETINAL AND EYE RESEARCH, 2002, 21 (04) :359-393
[8]   High speed spectral domain polarization sensitive optical coherence tomography of the human retina [J].
Götzinger, E ;
Pircher, M ;
Hitzenberger, CK .
OPTICS EXPRESS, 2005, 13 (25) :10217-10229
[9]   Performance of fourier domain vs. time domain optical coherence tomography [J].
Leitgeb, R ;
Hitzenberger, CK ;
Fercher, AF .
OPTICS EXPRESS, 2003, 11 (08) :889-894
[10]   Ultrahigh resolution Fourier domain optical coherence tomography [J].
Leitgeb, RA ;
Drexler, W ;
Unterhuber, A ;
Hermann, B ;
Bajraszewski, T ;
Le, T ;
Stingl, A ;
Fercher, AF .
OPTICS EXPRESS, 2004, 12 (10) :2156-2165