Dependence of SOA oxidation on organic aerosol mass concentration and OH exposure: experimental PAM chamber studies

被引:86
作者
Kang, E. [1 ]
Toohey, D. W. [2 ]
Brune, W. H. [1 ,3 ]
机构
[1] Penn State Univ, Dept Meteorol, University Pk, PA 16802 USA
[2] Univ Colorado, Dept Atmospher & Ocean Sci, Boulder, CO 80309 USA
[3] Korea Univ, Dept Earth & Environm Sci, Seoul 136701, South Korea
基金
美国国家科学基金会;
关键词
CHEMICAL-COMPOSITION; SECONDARY; SPECTROMETER; PHOTOOXIDATION; EVOLUTION; GAP;
D O I
10.5194/acp-11-1837-2011
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The oxidation of secondary organic aerosol (SOA) is studied with mass spectra analysis of SOA formed in a Potential Aerosol Mass (PAM) chamber, a small flow-through photo-oxidation chamber with extremely high OH and ozone levels. The OH exposure from a few minutes in the PAM chamber is similar to that from days to weeks in the atmosphere. The mass spectra were measured with a Quadrupole Aerosol Mass Spectrometer (Q-AMS) for SOA formed from oxidation of alpha-pinene, m-xylene, p-xylene, and a mixture of the three. The organic mass fractions of m/z 44 (CO2+) and m/z 43 (mainly C2H3O+), named f(44) and f(43) respectively, are used as indicators of the degree of organic aerosol (OA) oxidation that occurs as the OA mass concentration or the OH exposure are varied. The degree of oxidation is sensitive to both. For a fixed OH exposure, the degree of oxidation initially decreases rapidly and then more slowly as the OA mass concentration increases. For fixed initial precursor VOC amounts, the degree of oxidation increases linearly with OH exposure, with f(44) increasing and f(43) decreasing. In this study, the degree of SOA oxidation spans much of the range observed in the atmosphere. These results, while sensitive to the determination of f(44) and f(43), provide evidence that some characteristics of atmospheric OA oxidation can be generated in a PAM chamber. For all measurements in this study, the sum of f(44) and f(43) is 0.25 +/- 0.03, so that the slope of a linear regression is approximately -1 on an f(44) vs. f(43) plot. This constancy of the sum suggests that these ions are complete proxies for organic mass in the OA studied.
引用
收藏
页码:1837 / 1852
页数:16
相关论文
共 49 条
[21]   Evolution of Organic Aerosols in the Atmosphere [J].
Jimenez, J. L. ;
Canagaratna, M. R. ;
Donahue, N. M. ;
Prevot, A. S. H. ;
Zhang, Q. ;
Kroll, J. H. ;
DeCarlo, P. F. ;
Allan, J. D. ;
Coe, H. ;
Ng, N. L. ;
Aiken, A. C. ;
Docherty, K. S. ;
Ulbrich, I. M. ;
Grieshop, A. P. ;
Robinson, A. L. ;
Duplissy, J. ;
Smith, J. D. ;
Wilson, K. R. ;
Lanz, V. A. ;
Hueglin, C. ;
Sun, Y. L. ;
Tian, J. ;
Laaksonen, A. ;
Raatikainen, T. ;
Rautiainen, J. ;
Vaattovaara, P. ;
Ehn, M. ;
Kulmala, M. ;
Tomlinson, J. M. ;
Collins, D. R. ;
Cubison, M. J. ;
Dunlea, E. J. ;
Huffman, J. A. ;
Onasch, T. B. ;
Alfarra, M. R. ;
Williams, P. I. ;
Bower, K. ;
Kondo, Y. ;
Schneider, J. ;
Drewnick, F. ;
Borrmann, S. ;
Weimer, S. ;
Demerjian, K. ;
Salcedo, D. ;
Cottrell, L. ;
Griffin, R. ;
Takami, A. ;
Miyoshi, T. ;
Hatakeyama, S. ;
Shimono, A. .
SCIENCE, 2009, 326 (5959) :1525-1529
[22]   Organic aerosol and global climate modelling: a review [J].
Kanakidou, M ;
Seinfeld, JH ;
Pandis, SN ;
Barnes, I ;
Dentener, FJ ;
Facchini, MC ;
Van Dingenen, R ;
Ervens, B ;
Nenes, A ;
Nielsen, CJ ;
Swietlicki, E ;
Putaud, JP ;
Balkanski, Y ;
Fuzzi, S ;
Horth, J ;
Moortgat, GK ;
Winterhalter, R ;
Myhre, CEL ;
Tsigaridis, K ;
Vignati, E ;
Stephanou, EG ;
Wilson, J .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :1053-1123
[23]   Introducing the concept of Potential Aerosol Mass (PAM) [J].
Kang, E. ;
Root, M. J. ;
Toohey, D. W. ;
Brune, W. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (22) :5727-5744
[24]   Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere [J].
Kroll, Jesse H. ;
Seinfeld, John H. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (16) :3593-3624
[25]   Measurement of fragmentation and functionalization pathways in the heterogeneous oxidation of oxidized organic aerosol [J].
Kroll, Jesse H. ;
Smith, Jared D. ;
Che, Dung L. ;
Kessler, Sean H. ;
Worsnop, Douglas R. ;
Wilson, Kevin R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2009, 11 (36) :8005-8014
[26]   Secondary organic aerosol formation from isoprene photooxidation [J].
Kroll, JH ;
Ng, NL ;
Murphy, SM ;
Flagan, RC ;
Seinfeld, JH .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (06) :1869-1877
[27]  
Lambe A.T., 2010, Atmos. Meas. Tech. Discuss, V3, P5211, DOI DOI 10.5194/AMTD-3-5211-2010
[28]   Controlled OH radical production via ozone-alkene reactions for use in aerosol aging studies [J].
Lambe, Andrew T. ;
Zhang, Jieyuan ;
Sage, Amy M. ;
Donahue, Neil M. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (07) :2357-2363
[29]   Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra [J].
Lanz, V. A. ;
Alfarra, M. R. ;
Baltensperger, U. ;
Buchmann, B. ;
Hueglin, C. ;
Prevot, A. S. H. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2007, 7 (06) :1503-1522
[30]   Airborne measurement of OH reactivity during INTEX-B [J].
Mao, J. ;
Ren, X. ;
Brune, W. H. ;
Olson, J. R. ;
Crawford, J. H. ;
Fried, A. ;
Huey, L. G. ;
Cohen, R. C. ;
Heikes, B. ;
Singh, H. B. ;
Blake, D. R. ;
Sachse, G. W. ;
Diskin, G. S. ;
Hall, S. R. ;
Shetter, R. E. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (01) :163-173