free energy calculation;
ion channel;
OmpF porin;
cation selectivity;
single channel conductance;
D O I:
10.1016/S0301-4622(03)00062-0
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Ion current through single outer membrane protein F (OmpF) trimers was recorded and compared to molecular dynamics simulation. Unidirectional insertion was revealed from the asymmetry in channel conductance. Single trimer conductance showed particularly high values at low symmetrical salt solution. The conductance values of various alkali metal ion solutions were proportional to the monovalent cation mobility values in the bulk phase, LiCl < NaCl < KCl < RbCl similar to CsCl, but the conductance differences were quantitatively larger than conductivity differences in bulk solutions. Selectivity measurements at low concentration showed that OmpF channels favored permeation of alkali metal ions over chloride and suggested size preference for smaller cations. These results suggest that there are specific interactions between the permeating cation and charged residues lining the channel walls. This hypothesis was supported by computational study which predicted that monovalent cations bind to Asp113 at low concentration. Here, free energy calculations revealed that the affinity of the alkali metal ions to its binding site increased with their atomic radii, Li+ similar toNa(+) <K+ similar toRb(+) similar toCs(+). A detailed inspection of both experimental and computational results suggested that stronger binding at the central constriction of the channel increases the translocation rate of cations under applied voltage by increasing their local concentration relative to the bulk solution. (C) 2003 Elsevier Science B.V. All rights reserved.