Electromechanical Properties of Graphene Drumheads

被引:270
作者
Klimov, Nikolai N. [1 ,2 ,3 ]
Jung, Suyong [1 ,2 ]
Zhu, Shuze [4 ]
Li, Teng [1 ,4 ]
Wright, C. Alan [4 ]
Solares, Santiago D. [1 ,4 ]
Newell, David B. [3 ]
Zhitenev, Nikolai B. [2 ]
Stroscio, Joseph A. [2 ]
机构
[1] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[2] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[3] NIST, Phys Measurement Lab, Gaithersburg, MD 20899 USA
[4] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
FIELD;
D O I
10.1126/science.1220335
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We determined the electromechanical properties of a suspended graphene layer by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS) measurements, as well as computational simulations of the graphene-membrane mechanics and morphology. A graphene membrane was continuously deformed by controlling the competing interactions with a STM probe tip and the electric field from a back-gate electrode. The probe tip-induced deformation created a localized strain field in the graphene lattice. STS measurements on the deformed suspended graphene display an electronic spectrum completely different from that of graphene supported by a substrate. The spectrum indicates the formation of a spatially confined quantum dot, in agreement with recent predictions of confinement by strain-induced pseudomagnetic fields.
引用
收藏
页码:1557 / 1561
页数:5
相关论文
共 21 条
[1]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[2]   Pseudomagnetic Fields and Ballistic Transport in a Suspended Graphene Sheet [J].
Fogler, M. M. ;
Guinea, F. ;
Katsnelson, M. I. .
PHYSICAL REVIEW LETTERS, 2008, 101 (22)
[3]   Electron density distribution and screening in rippled graphene sheets [J].
Gibertini, Marco ;
Tomadin, Andrea ;
Polini, Marco ;
Fasolino, A. ;
Katsnelson, M. I. .
PHYSICAL REVIEW B, 2010, 81 (12)
[4]   Electron-Hole Crossover in Graphene Quantum Dots [J].
Guettinger, J. ;
Stampfer, C. ;
Libisch, F. ;
Frey, T. ;
Burgdoerfer, J. ;
Ihn, T. ;
Ensslin, K. .
PHYSICAL REVIEW LETTERS, 2009, 103 (04)
[5]   Gauge field induced by ripples in graphene [J].
Guinea, F. ;
Horovitz, Baruch ;
Le Doussal, P. .
PHYSICAL REVIEW B, 2008, 77 (20)
[6]   Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering [J].
Guinea, F. ;
Katsnelson, M. I. ;
Geim, A. K. .
NATURE PHYSICS, 2010, 6 (01) :30-33
[7]   Generating quantizing pseudomagnetic fields by bending graphene ribbons [J].
Guinea, F. ;
Geim, A. K. ;
Katsnelson, M. I. ;
Novoselov, K. S. .
PHYSICAL REVIEW B, 2010, 81 (03)
[8]  
Jung SY, 2011, NAT PHYS, V7, P245, DOI [10.1038/nphys1866, 10.1038/NPHYS1866]
[9]   Chiral tunnelling and the Klein paradox in graphene [J].
Katsnelson, M. I. ;
Novoselov, K. S. ;
Geim, A. K. .
NATURE PHYSICS, 2006, 2 (09) :620-625
[10]   Interplay between real and pseudomagnetic field in graphene with strain [J].
Kim, Kyung-Joong ;
Blanter, Ya M. ;
Ahn, Kang-Hun .
PHYSICAL REVIEW B, 2011, 84 (08)