On the automated definition of mobile target volumes from 4D-CT images for stereotactic body radiotherapy

被引:39
作者
Zhang, TZ [1 ]
Orton, NP [1 ]
Tomé, WA [1 ]
机构
[1] Univ Wisconsin, Dept Human Oncol, Madison, WI 53792 USA
关键词
deformable image registration; SBRT; target volume definition; vacuum immobilization;
D O I
10.1118/1.2106448
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Stereotactic body radiotherapy (SBRT) can be used to treat small lesions in the chest. A vacuum-based immobilization system is used in our clinic for SBRT, and a motion envelope is used in treatment planning. The purpose of this study is to automatically derive motion envelopes using deformable image registration of 4D-CT images, and to assess the effect of abdominal pressure on the motion envelopes. 4D-CT scans at ten phases were acquired prior to treatment for both free and restricted breathing using a vacuum-based immobilization system that includes an abdominal pressure pillow. To study the stability of the motion envelope over the course of treatment, a mid-treatment 4D-CT scan was obtained after delivery of the third fraction for two patients. The planning target volume excluding breathing motion (PTVex) was defined on the image set at full exhalation phase and transformed into all other phases using displacement maps from deformable image registration. The motion envelope was obtained as the union of PTVex masks of all phases. The ratios of the motion envelope to PTVex volume ranged from 1.3 to 2.5. When pressure was applied, the ratios were reduced by as much as 29% compared to free breathing for some patients, but increased by up to 9% for others. The abdominal pressure pillow has more motion restriction effects on the anterior/inferior region of the lung. For one of the two patients for whom the 4D-CT scan was repeated at mid-treatment, the motion envelope was reproducible. However, for the other patient the tumor location and lung motion pattern significantly changed due to changes in the anatomy surrounding the tumor during the course of treatment, indicating that an image-guided approach to SBRT may increase the efficacy of this treatment. (c) 2005 American Association of Physicists in Medicine.
引用
收藏
页码:3493 / 3502
页数:10
相关论文
共 23 条
[1]   Improvement of CT-based treatment-planning models of abdominal targets using static exhale imaging [J].
Balter, JM ;
Lam, KL ;
McGinn, CJ ;
Lawrence, TS ;
Ten Haken, RK .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1998, 41 (04) :939-943
[2]  
CHEVALIER TL, 1991, J NATL CANCER I, V83, P417
[3]   Mutual information based CT registration of the lung at exhale and inhale breathing states using thin-plate splines [J].
Coselmon, MM ;
Balter, JM ;
McShan, DL ;
Kessler, ML .
MEDICAL PHYSICS, 2004, 31 (11) :2942-2948
[4]   Improved survival in stage III non-small-cell lung cancer: Seven-year follow-up of cancer and leukemia group B (CALGB) 8433 trial [J].
Dillman, RO ;
Herndon, J ;
Seagren, SL ;
Eaton, WL ;
Green, MR .
JOURNAL OF THE NATIONAL CANCER INSTITUTE, 1996, 88 (17) :1210-1215
[5]  
Fischer B, 2003, LECT NOTES COMPUT SC, V2717, P261
[6]   A challenge to traditional radiation oncology [J].
Fowler, JF ;
Tomé, WA ;
Fenwick, JD ;
Mehta, MP .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2004, 60 (04) :1241-1256
[7]   Evaluation of microscopic tumor extension in non-small-cell lung cancer for three-dimensional conformal radiotherapy planning [J].
Giraud, P ;
Antoine, M ;
Larrouy, A ;
Milleron, B ;
Callard, P ;
De Rycke, Y ;
Carette, MF ;
Rosenwald, JC ;
Cosset, JM ;
Housset, M ;
Touboul, E .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2000, 48 (04) :1015-1024
[8]   Deep inspiration breath-hold technique for lung tumors: The potential value of target immobilization and reduced lung density in dose escalation [J].
Hanley, J ;
Debois, MM ;
Mah, D ;
Mageras, GS ;
Raben, A ;
Rosenzweig, K ;
Mychalczak, B ;
Schwartz, LH ;
Gloeggler, PJ ;
Lutz, W ;
Ling, CC ;
Leibel, SA ;
Fuks, Z ;
Kutcher, GJ .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 1999, 45 (03) :603-611
[9]   Acquiring 4D thoracic CT scans using a multislice helical method [J].
Keall, PJ ;
Starkschall, G ;
Shukla, H ;
Forster, KM ;
Ortiz, V ;
Stevens, CW ;
Vedam, SS ;
George, R ;
Guerrero, T ;
Mohan, R .
PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (10) :2053-2067
[10]   Motion adaptive x-ray therapy: a feasibility study [J].
Keall, PJ ;
Kini, VR ;
Vedam, SS ;
Mohan, R .
PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (01) :1-10