TiO2(B) Nanoribbons As Negative Electrode Material for Lithium Ion Batteries with High Rate Performance

被引:111
作者
Beuvier, Thomas [1 ]
Richard-Plouet, Mireille [1 ]
Mancini-Le Granvalet, Maryline [1 ]
Brousse, Thierry [2 ]
Crosnier, Olivier [2 ]
Brohan, Luc [1 ]
机构
[1] Univ Nantes, Inst Mat Jean Rouxel IMN, CNRS, F-44322 Nantes, France
[2] Univ Nantes, Polytech Nantes, LGMPA, EA2664, F-44306 Nantes 3, France
关键词
TITANATE NANOTUBES; NANOWIRES; STORAGE; INTERCALATION; ANATASE; ELECTROCHEMISTRY; NANOSTRUCTURES; NANORODS;
D O I
10.1021/ic1010192
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Nanosized TiO2(B) has been investigated as a possible candidate to replace Li4Ti5O12 or graphite as the negative electrode for a Li-ion battery. Nanoribbon precursors, classically synthesized in autogenous conditions at temperatures higher than 170 degrees C in alkaline medium, have been obtained, under reflux (T similar to 120 degrees C, P = 1 bar). After ionic exchange, these nanoribbons exhibit a surface area of 140 m(2) g(-1), larger than those obtained under autogenous conditions or by solid state chemistry. These nanoparticles transform after annealing to isomorphic titanium dioxide. They mainly crystallize as the TiO2(B) variety with only 5% of anatase. This quantification of the anatase/TiO2(B) ratio was deduced from Raman spectroscopy measurement. TEM analysis highlights the excellent crystallinity of the nanosized TiO2(B), crystallizing as 6 nm thin nanoribbons. These characteristics are essential in lithium batteries for a fast lithium ion solid state diffusion into the active material. In lithium batteries, the TiO2(B) nanoribbons exhibit a good capacity and an excellent rate capability (reversible capacity of 200 mA hg(-1) at C/3 rate (111 mA g(-1)), 100 mA h g(-1) at 15C rate (5030 mA g(-1)) for a 50% carbon black loaded electrode). The electrode formulation study highlights the importance of the electronic and ionic connection around the active particles. The cycleability of the nano-TiO2(B) is another interesting point with a capacity loss of 5% only, over 500 cycles at 3C.
引用
收藏
页码:8457 / 8464
页数:8
相关论文
共 48 条
[21]   Direct synthesis of nanowires with anatase and TiO2-B structures at near ambient conditions [J].
Daoud, Walid A. ;
Pang, G. K. H. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (51) :25746-25750
[22]   THE SOFT CHEMICAL SYNTHESIS OF TIO2 (B) FROM LAYERED TITANATES [J].
FEIST, TP ;
DAVIES, PK .
JOURNAL OF SOLID STATE CHEMISTRY, 1992, 101 (02) :275-295
[23]   SPINEL ANODES FOR LITHIUM-ION BATTERIES [J].
FERG, E ;
GUMMOW, RJ ;
DEKOCK, A ;
THACKERAY, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) :L147-L150
[24]   Mass and charge transport in hierarchically organized storage materials. Example: Porous active materials with nanocoated walls of pores [J].
Gaberscek, Miran ;
Dominko, Robert ;
Bele, Marjan ;
Remskar, Maja ;
Jamnik, Janez .
SOLID STATE IONICS, 2006, 177 (35-36) :3015-3022
[25]   TiO2(B) as a promising high potential negative electrode for large-size lithium-ion batteries [J].
Inaba, Minoru ;
Oba, Yasuyuki ;
Niina, Fumiharu ;
Murota, Yosuke ;
Ogino, Yasuyuki ;
Tasaka, Akimasa ;
Hirota, Ken .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :580-584
[26]   Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution [J].
Jitputti, Jaturong ;
Suzuki, Yoshikazu ;
Yoshikawa, Susumu .
CATALYSIS COMMUNICATIONS, 2008, 9 (06) :1265-1271
[27]   Formation of titanium oxide nanotube [J].
Kasuga, T ;
Hiramatsu, M ;
Hoson, A ;
Sekino, T ;
Niihara, K .
LANGMUIR, 1998, 14 (12) :3160-3163
[28]   Hydrothermal synthesis and characterization of nanorods of various titanates and titanium dioxide [J].
Kolen'ko, YV ;
Kovnir, KA ;
Gavrilov, AI ;
Garshev, AV ;
Frantti, J ;
Lebedev, OI ;
Churagulov, BR ;
Van Tendeloo, G ;
Yoshimura, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (09) :4030-4038
[29]   Titanate nanotubes and nanorods prepared from rutile powder [J].
Lan, Y ;
Gao, XP ;
Zhu, HY ;
Zheng, ZF ;
Yan, TY ;
Wu, F ;
Ringer, SP ;
Song, DY .
ADVANCED FUNCTIONAL MATERIALS, 2005, 15 (08) :1310-1318
[30]   Nanotubes of lepidocrocite titanates [J].
Ma, RZ ;
Bando, Y ;
Sasaki, T .
CHEMICAL PHYSICS LETTERS, 2003, 380 (5-6) :577-582