Temperature Sensing Using Fluorescent Nanothermometers

被引:1311
作者
Vetrone, Fiorenzo [1 ]
Naccache, Rafik [1 ]
Zamarron, Alicia [2 ]
Juarranz de la Fuente, Angeles [2 ]
Sanz-Rodriguez, Francisco [2 ]
Martinez Maestro, Laura [3 ]
Martin Rodriguez, Emma [3 ]
Jaque, Daniel [3 ]
Garcia Sole, Jose [3 ]
Capobianco, John A. [1 ]
机构
[1] Concordia Univ, Dept Chem & Biochem, Montreal, PQ H4B 1R6, Canada
[2] Univ Autonoma Madrid, Dept Biol, E-28049 Madrid, Spain
[3] Univ Autonoma Madrid, Dept Fis Mat, GIEL, E-28049 Madrid, Spain
基金
加拿大自然科学与工程研究理事会;
关键词
nanothermometer; upconversion; HeLa cancer cell; nanoparticles; thermal sensing; UP-CONVERSION; DOPED NANOPARTICLES; THERMOMETRY; CELLS; SENSOR; NANOCRYSTALS; LUMINESCENCE; NANOSCALE; PROBES;
D O I
10.1021/nn100244a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Acquiring the temperature of a single living cell is not a trivial task. In this paper, we devise a novel nanothermometer, capable of accurately determining the temperature of solutions as well as biological systems such as HeLa cancer cells. The nanothermometer is based on the temperature-sensitive fluorescence of NaYF4:Er3+,Yb3+ nanoparticles, where the intensity ratio of the green fluorescence bands of the Er3+ dopant ions (H-2(11/2) -> I-4(15/2) and S-4(3/2) -> I-4(15/2)) changes with temperature. The nanothermometers were first used to obtain thermal profiles created when heating a colloidal solution of NaYF4:Er3+,Yb3+ nanoparticles in water using a pump-probe experiment. Following incubation of the nanoparticles with HeLa cervical cancer cells and their subsequent uptake, the fluorescent nanothermometers measured the internal temperature of the living cell from 25 degrees C to its thermally induced death at 45 degrees C.
引用
收藏
页码:3254 / 3258
页数:5
相关论文
共 30 条
[1]   Scanning thermal imaging of microelectronic circuits with a fluorescent nanoprobe [J].
Aigouy, L ;
Tessier, G ;
Mortier, M ;
Charlot, B .
APPLIED PHYSICS LETTERS, 2005, 87 (18) :1-3
[2]   Er3+-doped BaTiO3 nanocrystals for thermometry:: Influence of nanoenvironment on the sensitivity of a fluorescence based temperature sensor [J].
Alencar, MARC ;
Maciel, GS ;
de Araújo, CB ;
Patra, A .
APPLIED PHYSICS LETTERS, 2004, 84 (23) :4753-4755
[3]   Nanoscale thermometry via the fluorescence of YAG:Ce phosphor particles:: measurements from 7 to 77 °C [J].
Allison, SW ;
Gillies, GT ;
Rondinone, AJ ;
Cates, MR .
NANOTECHNOLOGY, 2003, 14 (08) :859-863
[4]   Upconversion and anti-stokes processes with f and d ions in solids [J].
Auzel, F .
CHEMICAL REVIEWS, 2004, 104 (01) :139-173
[5]   Lanthanide-Based Luminescent Hybrid Materials [J].
Binnemans, Koen .
CHEMICAL REVIEWS, 2009, 109 (09) :4283-4374
[6]   THE USE OF EXOGENOUS FLUORESCENT-PROBES FOR TEMPERATURE-MEASUREMENTS IN SINGLE LIVING CELLS [J].
CHAPMAN, CF ;
LIU, Y ;
SONEK, GJ ;
TROMBERG, BJ .
PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1995, 62 (03) :416-425
[7]   Upconversion fluorescence imaging of cells and small animals using lanthanide doped nanocrystals [J].
Chatteriee, Dev K. ;
Rufalhah, Abdul J. ;
Zhang, Yong .
BIOMATERIALS, 2008, 29 (07) :937-943
[8]   A liquid-Ga-fitted carbon nanotube: A miniaturized temperature sensor and electrical switch [J].
Dorozhkin, PS ;
Tovstonog, SV ;
Golberg, D ;
Zhan, JH ;
Ishikawa, Y ;
Shiozawa, M ;
Nakanishi, H ;
Nakata, K ;
Bando, Y .
SMALL, 2005, 1 (11) :1088-1093
[9]   A fluorescent molecular thermometer based on the nickel(II) high-spin/low-spin interconversion [J].
Engeser, M ;
Fabbrizzi, L ;
Licchelli, M ;
Sacchi, D .
CHEMICAL COMMUNICATIONS, 1999, (13) :1191-1192
[10]   Carbon nanothermometer containing gallium - Gallium's macroscopic properties are retained on a miniature scale in this nanodevice. [J].
Gao, YH ;
Bando, Y .
NATURE, 2002, 415 (6872) :599-599