Entropic exponents of lattice polygons with specified knot type

被引:38
作者
Orlandini, E
Tesi, MC
vanRensburg, EJJ
Whittington, SG
机构
[1] UNIV OXFORD,INST MATH,OXFORD OX1 3LB,ENGLAND
[2] YORK UNIV,DEPT MATH,N YORK,ON M3J 1P3,CANADA
[3] UNIV TORONTO,DEPT CHEM,TORONTO,ON M5S 1A1,CANADA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 12期
关键词
D O I
10.1088/0305-4470/29/12/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ring polymers in three dimensions can be knotted, and the dependence of their critical behaviour on knot type is an open question. We study this problem for polygons on the simple cubic lattice using a novel grand-canonical Monte Carlo method and present numerical evidence that the entropic exponent depends on the knot type of the polygon. We conjecture that the exponent increases by unity for each additional factor in the knot factorization of the polygon.
引用
收藏
页码:L299 / L303
页数:5
相关论文
共 21 条
[1]   RANDOM-PATHS AND RANDOM SURFACES ON A DIGITAL-COMPUTER [J].
BERG, B ;
FOERSTER, D .
PHYSICS LETTERS B, 1981, 106 (04) :323-326
[2]   POLYMERS AND G-ABSOLUTE-VALUE-PHI-4 THEORY IN FOUR DIMENSIONS [J].
DECARVALHO, CA ;
CARACCIOLO, S ;
FROHLICH, J .
NUCLEAR PHYSICS B, 1983, 215 (02) :209-248
[3]   A NEW MONTE-CARLO APPROACH TO THE CRITICAL PROPERTIES OF SELF-AVOIDING RANDOM-WALKS [J].
DECARVALHO, CA ;
CARACCIOLO, S .
JOURNAL DE PHYSIQUE, 1983, 44 (03) :323-331
[4]   TOPOLOGY OF CLOSED RANDOM POLYGONS [J].
DEGUCHI, T ;
TSURUSAKI, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1993, 62 (05) :1411-1414
[5]  
DEGUCHI T, 1994, RANDOM KNOTTING LINK, P89
[6]  
GEYER CJ, 1991, COMPUTING SCIENCE AND STATISTICS, P156
[7]  
GEYER CJ, 1994, PREPRINT
[8]   ACCURATE CRITICAL EXPONENTS FROM FIELD-THEORY [J].
LEGUILLOU, JC ;
ZINNJUSTIN, J .
JOURNAL DE PHYSIQUE, 1989, 50 (12) :1365-1370
[9]   CRITICAL EXPONENTS FROM FIELD-THEORY [J].
LEGUILLOU, JC ;
ZINNJUSTIN, J .
PHYSICAL REVIEW B, 1980, 21 (09) :3976-3998
[10]   CRITICAL EXPONENTS, HYPERSCALING, AND UNIVERSAL AMPLITUDE RATIOS FOR 2-DIMENSIONAL AND 3-DIMENSIONAL SELF-AVOIDING WALKS [J].
LI, B ;
MADRAS, N ;
SOKAL, AD .
JOURNAL OF STATISTICAL PHYSICS, 1995, 80 (3-4) :661-754