Entropic exponents of lattice polygons with specified knot type

被引:38
作者
Orlandini, E
Tesi, MC
vanRensburg, EJJ
Whittington, SG
机构
[1] UNIV OXFORD,INST MATH,OXFORD OX1 3LB,ENGLAND
[2] YORK UNIV,DEPT MATH,N YORK,ON M3J 1P3,CANADA
[3] UNIV TORONTO,DEPT CHEM,TORONTO,ON M5S 1A1,CANADA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 12期
关键词
D O I
10.1088/0305-4470/29/12/003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ring polymers in three dimensions can be knotted, and the dependence of their critical behaviour on knot type is an open question. We study this problem for polygons on the simple cubic lattice using a novel grand-canonical Monte Carlo method and present numerical evidence that the entropic exponent depends on the knot type of the polygon. We conjecture that the exponent increases by unity for each additional factor in the knot factorization of the polygon.
引用
收藏
页码:L299 / L303
页数:5
相关论文
共 21 条
[11]   STATISTICS OF LATTICE ANIMALS AND DILUTE BRANCHED POLYMERS [J].
LUBENSKY, TC ;
ISAACSON, J .
PHYSICAL REVIEW A, 1979, 20 (05) :2130-2146
[12]   KNOTS IN RANDOM-WALKS [J].
PIPPENGER, N .
DISCRETE APPLIED MATHEMATICS, 1989, 25 (03) :273-278
[13]   CRITICAL EXPONENTS FOR LATTICE ANIMALS WITH FIXED CYCLOMATIC INDEX [J].
SOTEROS, CE ;
WHITTINGTON, SG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (09) :2187-2193
[14]   ENTANGLEMENT COMPLEXITY OF GRAPHS IN Z3 [J].
SOTEROS, CE ;
SUMNERS, DW ;
WHITTINGTON, SG .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1992, 111 :75-91
[15]   KNOTS IN SELF-AVOIDING WALKS [J].
SUMNERS, DW ;
WHITTINGTON, SG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07) :1689-1694
[16]   Monte Carlo study of the interacting self-avoiding walk model in three dimensions [J].
Tesi, MC ;
vanRensburg, EJJ ;
Orlandini, E ;
Whittington, SG .
JOURNAL OF STATISTICAL PHYSICS, 1996, 82 (1-2) :155-181
[17]   THE DIMENSIONS OF KNOTTED POLYGONS [J].
VANRENSBURG, EJJ ;
WHITTINGTON, SG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (16) :3935-3948
[18]   THE KNOT PROBABILITY IN LATTICE POLYGONS [J].
VANRENSBURG, EJJ ;
WHITTINGTON, SG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (15) :3573-3590
[19]   THE BFACF ALGORITHM AND KNOTTED POLYGONS [J].
VANRENSBURG, EJJ ;
WHITTINGTON, SG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (23) :5553-5567
[20]  
WHITTINGTON SG, 1992, P S APPL MATH, V45, P73