Kinetic semidiscretization of scalar conservation laws and convergence by using averaging lemmas

被引:19
作者
Vasseur, A
机构
[1] Ecole Normale Super, DMI, F-75230 Paris 05, France
[2] Univ Paris 06, Anal Numer Lab, F-75252 Paris 05, France
关键词
scalar conservation laws; kinetic schemes; averaging lemmas;
D O I
10.1137/S0036142996313610
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a time discrete kinetic scheme (known as "transport collapse method") for the inviscid Burgers equation partial derivative(t)u + partial derivative(x) u(2)/2 = 0. We prove the convergence of the scheme by using averaging lemmas without bounded variation estimate. Then, the extension of this result to the kinetic model of Brenier and Corrias is discussed.
引用
收藏
页码:465 / 474
页数:10
相关论文
共 11 条
[1]  
Agoshkov V.I., 1984, SOVIET MATH DOKL, V29, P662
[2]   AVERAGED MULTIVALUED SOLUTIONS FOR SCALAR CONSERVATION-LAWS [J].
BRENIER, Y .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (06) :1013-1037
[3]   A kinetic formulation for multi-branch entropy solutions of scalar conservation laws [J].
Brenier, Y ;
Corrias, L .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1998, 15 (02) :169-190
[5]   NUMERICAL SOLUTION OF NAVIER-STOKES EQUATIONS [J].
CHORIN, AJ .
MATHEMATICS OF COMPUTATION, 1968, 22 (104) :745-&
[6]   About the splitting algorithm for Boltzmann and BGK equations [J].
Desvillettes, L ;
Mischler, S .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1996, 6 (08) :1079-1101
[7]   LP REGULARITY OF VELOCITY AVERAGES [J].
DIPERNA, RJ ;
LIONS, PL ;
MEYER, Y .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1991, 8 (3-4) :271-287
[8]   A KINETIC CONSTRUCTION OF GLOBAL-SOLUTIONS OF 1ST ORDER QUASILINEAR EQUATIONS [J].
GIGA, Y ;
MIYAKAWA, T .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (02) :505-515
[9]  
GOLSE F, 1985, CR ACAD SCI I-MATH, V301, P341
[10]   KINETIC FORMULATION OF THE ISENTROPIC GAS-DYNAMICS AND P-SYSTEMS [J].
LIONS, PL ;
PERTHAME, B ;
TADMOR, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 163 (02) :415-431