Characterization of the shape of a scattering obstacle using the spectral data of the far field operator

被引:420
作者
Kirsch, A [1 ]
机构
[1] Univ Karlsruhe, Math Inst 2, D-76128 Karlsruhe, Germany
关键词
D O I
10.1088/0266-5611/14/6/009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is concerned with the inverse obstacle scattering problem for time harmonic plane waves. We derive a factorization of the far field operator F in the form GSG* and prove that the ranges of root F and G coincide. Then we give an explicit characterization of the scattering obstacle which uses only the spectral data of the far field operator F. This result is used to prove a convergence result for a recent numerical method proposed by Colton, Kirsch, Monk, Piana and Potthast. We illustrate this method by some numerical examples.
引用
收藏
页码:1489 / 1512
页数:24
相关论文
共 35 条
[11]  
COSTABEL M, 1986, J REINE ANGEW MATH, V372, P34
[12]   Uniqueness in inverse obstacle scattering with conductive boundary condition [J].
Gerlach, T ;
Kress, R .
INVERSE PROBLEMS, 1996, 12 (05) :619-625
[13]  
HANKE M, 1995, VIBRATION CONTROL AN, V3, P909
[14]   FRECHET DERIVATIVES IN INVERSE OBSTACLE SCATTERING [J].
HETTLICH, F .
INVERSE PROBLEMS, 1995, 11 (02) :371-382
[15]  
HETTLICH F, 1996, P ICIAM 95, V2, P165
[16]   2 METHODS FOR SOLVING THE INVERSE ACOUSTIC SCATTERING PROBLEM [J].
KIRSCH, A ;
KRESS, R ;
MONK, P ;
ZINN, A .
INVERSE PROBLEMS, 1988, 4 (03) :749-770
[17]  
Kirsch A, 1998, MATH METHOD APPL SCI, V21, P619, DOI 10.1002/(SICI)1099-1476(19980510)21:7<619::AID-MMA940>3.0.CO
[18]  
2-P
[19]   THE DOMAIN DERIVATIVE AND 2 APPLICATIONS IN INVERSE SCATTERING-THEORY [J].
KIRSCH, A .
INVERSE PROBLEMS, 1993, 9 (01) :81-96
[20]   UNIQUENESS IN INVERSE OBSTACLE SCATTERING [J].
KIRSCH, A ;
KRESS, R .
INVERSE PROBLEMS, 1993, 9 (02) :285-299