Optimal stability for the inverse problem of multiple cavities

被引:42
作者
Alessandrini, G
Rondi, L
机构
[1] Univ Trieste, Dipartimento Sci Matemat, I-34127 Trieste, Italy
[2] SISSA, ISAS, I-34014 Trieste, Italy
关键词
D O I
10.1006/jdeq.2000.3987
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the determination of finitely many cavities in a planar inhomogeneous conductor from one current and voltage measurement collected on the exterior boundary. We prove stability estimates under essentially minimal a priori regularity assumptions. We construct an explicit example showing the optimality of such stability estimates. (C) 2001 Academic Press.
引用
收藏
页码:356 / 386
页数:31
相关论文
共 24 条
[1]  
Adams A, 2003, SOBOLEV SPACES
[2]   Unique determination of multiple cracks by two measurements [J].
Alessandrini, G ;
Valenzuela, AD .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1996, 34 (03) :913-921
[3]   Stable determination of a crack in a planar inhomogeneous conductor [J].
Alessandrini, G ;
Rondi, L .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 30 (02) :326-340
[4]   Examples of instability in inverse boundary-value problems [J].
Alessandrini, G .
INVERSE PROBLEMS, 1997, 13 (04) :887-897
[5]   AN IDENTIFICATION PROBLEM FOR AN ELLIPTIC EQUATION IN 2 VARIABLES [J].
ALESSANDRINI, G .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1986, 145 :265-295
[6]  
ALESSANDRINI G, 1988, ARCH RATION MECH AN, V102, P183
[8]  
Alessandrini G., 1996, Rend. Istit. Mat. Univ. Trieste, V28, P351
[9]   The boundary inverse problem for the Laplace equation in two dimensions [J].
Aparicio, ND ;
Pidcock, MK .
INVERSE PROBLEMS, 1996, 12 (05) :565-577
[10]   Stable determination of boundaries from Cauchy data [J].
Beretta, E ;
Vessella, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1998, 30 (01) :220-232