Support vector machine-based image classification for genetic syndrome diagnosis

被引:28
作者
David, A [1 ]
Lerner, B [1 ]
机构
[1] Ben Gurion Univ Negev, Pattern Anal & Machine Learning Lab, Dept Elect & Comp Engn, IL-84105 Beer Sheva, Israel
关键词
support vector machine (SVM); multiclass classification by error correcting output code (ECOC); rejection; fluorescence in situ hybridization (FISH); genetics;
D O I
10.1016/j.patrec.2004.09.048
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We implement structural risk minimization and cross-validation in order to optimize kernel and parameters of a support vector machine (SVM) and multiclass SVM-based image classifiers, thereby enabling the diagnosis of genetic abnormalities. By thresholding the distance of patterns from the hypothesis separating the classes we reject a percentage of the miss-classified patterns reducing the expected risk. Accurate performance of the SVM in comparison to other state-of-the-art classifiers demonstrates the benefit of SVM-based genetic syndrome diagnosis. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1029 / 1038
页数:10
相关论文
共 22 条
[11]   Kerneltron: Support vector "machine" in silicon [J].
Genov, R ;
Cauwenberghs, G .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (05) :1426-1434
[12]  
JOACHIMS T, 1999, ADV KERNEL METHOS SU
[13]   Segmentation of ultrasonic images using Support Vector Machines [J].
Kotropoulos, C ;
Pitas, I .
PATTERN RECOGNITION LETTERS, 2003, 24 (4-5) :715-727
[14]   Automatic text detection and removal in video sequences [J].
Lee, CW ;
Jung, K ;
Kim, HJ .
PATTERN RECOGNITION LETTERS, 2003, 24 (15) :2607-2623
[15]   Feature representation and signal classification in fluorescence in-situ hybridization image analysis [J].
Lerner, B ;
Clocksin, WF ;
Dhanjal, S ;
Hultén, MA ;
Bishop, CM .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2001, 31 (06) :655-665
[16]   A comparison of state-of-the-art classification techniques with application to cytogenetics [J].
Lerner, B ;
Lawrence, ND .
NEURAL COMPUTING & APPLICATIONS, 2001, 10 (01) :39-47
[17]  
Netten H., 1996, Bioimaging, V4, P93, DOI 10.1002/1361-6374(199606)4:2<93::AID-BIO7>3.3.CO
[18]  
2-Z
[19]   Membership authentication in the dynamic group by face classification using SVM ensemble [J].
Pang, SN ;
Kim, D ;
Bang, SY .
PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) :215-225
[20]  
SCHWAIGHOFER A, 2002, SVM TOOLBOX MATLAB