Cytosine methylation regulates oviposition in the pathogenic blood fluke Schistosoma mansoni

被引:83
作者
Geyer, Kathrin K. [1 ]
Lopez, Carlos M. Rodriguez [1 ]
Chalmers, Iain W. [1 ]
Munshi, Sabrina E. [1 ]
Truscott, Martha [1 ]
Heald, James [1 ]
Wilkinson, Mike J. [1 ]
Hoffmann, Karl F. [1 ]
机构
[1] Aberystwyth Univ, Inst Biol Environm & Rural Sci, Aberystwyth SY23 3DA, Dyfed, Wales
来源
NATURE COMMUNICATIONS | 2011年 / 2卷
基金
英国惠康基金;
关键词
DNA METHYLTRANSFERASE INHIBITORS; DROSOPHILA-MELANOGASTER; CAENORHABDITIS-ELEGANS; PRISTIONCHUS-PACIFICUS; MASS-SPECTROMETRY; GENOME; GENE; CANCER; CELLS; IDENTIFICATION;
D O I
10.1038/ncomms1433
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Similar to other metazoan pathogens, Schistosoma mansoni undergoes transcriptional and developmental regulation during its complex lifecycle and host interactions. DNA methylation as a mechanism to control these processes has, to date, been discounted in this parasite. Here we show the first evidence for cytosine methylation in the S. mansoni genome. Transcriptional coregulation of novel DNA methyltransferase (SmDnmt2) and methyl-CpG-binding domain proteins mirrors the detection of cytosine methylation abundance and implicates the presence of a functional DNA methylation machinery. Genome losses in cytosine methylation upon SmDnmt2 silencing and the identification of a hypermethylated, repetitive intron within a predicted forkhead gene confirm this assertion. Importantly, disruption of egg production and egg maturation by 5-azacytidine establishes an essential role for 5-methylcytosine in this parasite. These findings provide the first functional confirmation for this epigenetic modification in any worm species and link the cytosine methylation machinery to platyhelminth oviposition processes.
引用
收藏
页数:10
相关论文
共 58 条
[21]   Evolution of dnmt-2 and mbd-2-like genes in the free-living nematodes Pristionchus pacificus, Caenorhabditis elegans and Caenorhabditis briggsae [J].
Gutierrez, A ;
Sommer, RJ .
NUCLEIC ACIDS RESEARCH, 2004, 32 (21) :6388-6396
[22]   Functional diversification of the nematode mbd2/3 gene between Pristionchus pacificus and Caenorhabditis elegans [J].
Gutierrez, Arturo ;
Sommer, Ralf J. .
BMC GENETICS, 2007, 8 (1)
[23]   Ribosomal DNA is an effective marker of Brassica chromosomes [J].
Hasterok, R ;
Jenkins, G ;
Langdon, T ;
Jones, RN ;
Maluszynska, J .
THEORETICAL AND APPLIED GENETICS, 2001, 103 (04) :486-490
[24]   FISH TECHNIQUES FOR CONSTRUCTING PHYSICAL MAPS ON SCHISTOSOME CHROMOSOMES [J].
HIRAI, H ;
LOVERDE, PT .
PARASITOLOGY TODAY, 1995, 11 (08) :310-314
[25]  
HOCKLEY D J, 1973, International Journal for Parasitology, V3, P13, DOI 10.1016/0020-7519(73)90004-0
[26]   Schistosomiasis in Africa: An Emerging Tragedy in Our New Global Health Decade [J].
Hotez, Peter J. ;
Fenwick, Alan .
PLOS NEGLECTED TROPICAL DISEASES, 2009, 3 (09)
[27]   CELLULAR-DIFFERENTIATION, CYTIDINE ANALOGS AND DNA METHYLATION [J].
JONES, PA ;
TAYLOR, SM .
CELL, 1980, 20 (01) :85-93
[28]   The fundamental role of epigenetic events in cancer [J].
Jones, PA ;
Baylin, SB .
NATURE REVIEWS GENETICS, 2002, 3 (06) :415-428
[29]   Developmentally regulated DNA methylation in Dicyostelium discoideum [J].
Katoh, M ;
Curk, T ;
Xu, QK ;
Zupan, B ;
Kuspa, A ;
Shaulsky, G .
EUKARYOTIC CELL, 2006, 5 (01) :18-25
[30]   The unacknowledged impact of chronic schistosomiasis [J].
King, Charles H. ;
Dangerfield-Chay, Madeline .
CHRONIC ILLNESS, 2008, 4 (01) :65-79