Plasma-assisted methane reduction of a NiO catalyst-Low temperature activation of methane and formation of carbon nanofibres

被引:109
作者
Gallon, Helen J. [1 ]
Tu, Xin [1 ]
Twigg, Martyn V. [2 ]
Whitehead, J. Christopher [1 ]
机构
[1] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
[2] Johnson Matthey Plc, Orchard Labs, Royston SG8 5HE, England
基金
英国工程与自然科学研究理事会;
关键词
Carbon nanomaterials; Dielectric barrier discharge; Methane activation; NiO reduction; Plasma-catalysis; CHEMICAL-VAPOR-DEPOSITION; HYDROGEN-PRODUCTION; NANOTUBES SYNTHESIS; SYNTHESIS GAS; DECOMPOSITION; HYDROCARBONS; CONVERSION; GROWTH; MECHANISMS;
D O I
10.1016/j.apcatb.2011.06.023
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low temperature reduction of a NiO catalyst by CH4 was performed in a coaxial double dielectric barrier discharge (DBD) reactor for the first time. The reduction involves active surface carbon which is produced via plasma decomposition of CH4. On the reduced Ni catalyst, activation of CH4 and its fragments to form H-2 and carbon nanofibres occurred at 330 degrees C. CH4 conversions of 37%were achieved in the plasma-catalytic reaction at atmospheric pressure, with 99% selectivity towards H-2 and solid carbon. These results demonstrate a synergistic effect where both the plasma and catalyst are vital for the production of H-2 and carbon nanofibres. In the absence of the catalyst stable plasma could not be ignited with a pure CH4, flow and thermal studies showed that in the absence of the plasma CH4 conversion was minimal. (C) 2011 Elsevier By. All rights reserved.
引用
收藏
页码:616 / 620
页数:5
相关论文
共 36 条
[21]   CO2 reforming of methane by the combination of dielectric-barrier discharges and catalysis [J].
Kraus, M ;
Eliasson, B ;
Kogelschatz, U ;
Wokaun, A .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2001, 3 (03) :294-300
[22]   Methane conversion to higher hydrocarbons in the presence of carbon dioxide using dielectric-barrier discharge plasmas [J].
Liu, CJ ;
Xue, BZ ;
Eliasson, B ;
He, F ;
Li, Y ;
Xu, GH .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2001, 21 (03) :301-310
[23]   Plasma-assisted preparation of Ni/SiO2 catalyst using atmospheric high frequency cold plasma jet [J].
Liu, Gaihuan ;
Li, Yuliang ;
Chu, Wei ;
Shi, Xinyu ;
Dai, Xiaoyan ;
Yin, Yongxiang .
CATALYSIS COMMUNICATIONS, 2008, 9 (06) :1087-1091
[24]  
Manley T.C., 1943, T ELECTROCHEMICAL SO, V84, P83, DOI [DOI 10.1149/1.3071556, 10.1149/1.3071556]
[25]   Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process [J].
Scott, CD ;
Arepalli, S ;
Nikolaev, P ;
Smalley, RE .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2001, 72 (05) :573-580
[26]   Hydrogen production by methane decomposition: Origin of the catalytic activity of carbon materials [J].
Serrano, D. P. ;
Botas, J. A. ;
Fierro, J. L. G. ;
Guil-Lopez, R. ;
Pizarro, P. ;
Gomez, G. .
FUEL, 2010, 89 (06) :1241-1248
[27]   Research on Ni/γ-Al2O3 catalyst for CO2 reforming of CH4 prepared by atmospheric pressure glow discharge plasma jet [J].
Shang, Shuyong ;
Liu, Gaihuan ;
Chai, Xiaoyan ;
Tao, Xumei ;
Li, Xiang ;
Bai, Meigui ;
Chu, Wei ;
Dai, Xiaoyan ;
Zhao, Yanxi ;
Yin, Yongxiang .
CATALYSIS TODAY, 2009, 148 (3-4) :268-274
[28]  
Sivakumar V.M., 2010, J NANOMATER, P11
[29]   Growth of carbon nanotubes by the catalytic decomposition of methane over Fe-Mo/Al2O3 catalyst: effect of temperature on tube structure [J].
Song Jin-ling ;
Wang Li ;
Feng Shou-ai ;
Zhao Jiang-hong ;
Zhu Zhen-ping .
NEW CARBON MATERIALS, 2009, 24 (04) :307-313
[30]   Low-temperature, nonlinear rapid growth of aligned carbon nanotubes [J].
Ting, JM ;
Liao, KH .
CHEMICAL PHYSICS LETTERS, 2004, 396 (4-6) :469-472