NPAS2: An analog of clock operative in the mammalian forebrain

被引:437
作者
Reick, M
Garcia, JA
Dudley, C
McKnight, SL
机构
[1] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Internal Med, Dallas, TX 75390 USA
关键词
D O I
10.1126/science.1060699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Neuronal PAS domain protein 2 (NPAS2) is a transcription factor expressed primarily in the mammalian forebrain. NPAS2 is highly related in primary amino acid sequence to Clock, a transcription factor expressed in the suprachiasmatic nucleus that heterodimerizes with BMAL1 and regulates circadian rhythm. To investigate the biological role of NPAS2, we prepared a neuroblastoma cell Line capable of conditional induction of the NPAS2:BMAL1 heterodimer and identified putative target genes by representational difference analysis, DNA microarrays, and Northern blotting. Coinduction of NPAS2 and BMAL1 activated transcription of the endogenous Per1, Per2, and Cry1 genes, which encode negatively activating components of the circadian regulatory apparatus, and repressed transcription of the endogenous BMAL1 gene. Analysis of the frontal cortex of wild-type mice kept in a 24-hour Light-dark cycle revealed that Per1, Per2, and Cry1 mRNA Levels were elevated during darkness and reduced during Light, whereas BMAL1 mRNA displayed the opposite pattern. In situ hybridization assays of mice kept in constant darkness revealed that Per2 mRNA abundance did not oscillate as a function of the circadian cycle in NPAS2-deficient mice. Thus, NPAS2 likely functions as part of a molecular clock operative in the mammalian forebrain.
引用
收藏
页码:506 / 509
页数:4
相关论文
共 29 条
  • [11] Role of the CLOCK protein in the mammalian circadian mechanism
    Gekakis, N
    Staknis, D
    Nguyen, HB
    Davis, FC
    Wilsbacher, LD
    King, DP
    Takahashi, JS
    Weitz, CJ
    [J]. SCIENCE, 1998, 280 (5369) : 1564 - 1569
  • [12] The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors
    Hogenesch, JB
    Gu, YZ
    Jain, SJ
    Bradfield, CA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (10) : 5474 - 5479
  • [13] Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer
    Hughes, TR
    Mao, M
    Jones, AR
    Burchard, J
    Marton, MJ
    Shannon, KW
    Lefkowitz, SM
    Ziman, M
    Schelter, JM
    Meyer, MR
    Kobayashi, S
    Davis, C
    Dai, HY
    He, YDD
    Stephaniants, SB
    Cavet, G
    Walker, WL
    West, A
    Coffey, E
    Shoemaker, DD
    Stoughton, R
    Blanchard, AP
    Friend, SH
    Linsley, PS
    [J]. NATURE BIOTECHNOLOGY, 2001, 19 (04) : 342 - 347
  • [14] A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock
    Jin, XW
    Shearman, LP
    Weaver, DR
    Zylka, MJ
    De Vries, GJ
    Reppert, SM
    [J]. CELL, 1999, 96 (01) : 57 - 68
  • [15] Positional cloning of the mouse circadian Clock gene
    King, DP
    Zhao, YL
    Sangoram, AM
    Wilsbacher, LD
    Tanaka, M
    Antoch, MP
    Steeves, TDL
    Vitaterna, MH
    Kornhauser, JM
    Lowrey, PL
    Turek, FW
    Takahashi, JS
    [J]. CELL, 1997, 89 (04) : 641 - 653
  • [16] Klein D. C., 1991, Suprachiasmatic nucleus the mind's clock
  • [17] The Drosophila clock gene double-time encodes a protein closely related to human casein kinase Iε
    Kloss, B
    Price, JL
    Saez, L
    Blau, J
    Rothenfluh, A
    Wesley, CS
    Young, MW
    [J]. CELL, 1998, 94 (01) : 97 - 107
  • [18] mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop
    Kume, K
    Zylka, MJ
    Sriram, S
    Shearman, LP
    Weaver, DR
    Jin, XW
    Maywood, ES
    Hastings, MH
    Reppert, SM
    [J]. CELL, 1999, 98 (02) : 193 - 205
  • [19] Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau
    Lowrey, PL
    Shimomura, K
    Antoch, MP
    Yamazaki, S
    Zemenides, PD
    Ralph, MR
    Menaker, M
    Takahashi, JS
    [J]. SCIENCE, 2000, 288 (5465) : 483 - 491
  • [20] Ecdysone-inducible gene expression in mammalian cells and transgenic mice
    No, D
    Yao, TP
    Evans, RM
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (08) : 3346 - 3351