Extensions and contractions of the Lie algebra of q-pseudodifferential symbols on the circle

被引:47
作者
Khesin, B
Lyubashenko, V
Roger, C
机构
[1] UNIV YORK,DEPT MATH,YORK YO1 5DD,N YORKSHIRE,ENGLAND
[2] UNIV LYON 1,INST GIRARD DESARGUES,URA 746,F-69622 VILLEURBANNE,FRANCE
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jfan.1996.2896
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct cocycles on the Lie algebra of pseudo- and q-pseudodifferential symbols of one variable and on their close relatives: the sine-algebra and the Poisson algebra on two-torus. A ''quantum'' Godbillon-Vey cocycle on (pseudo)differential operators appears in this construction as a natural generalization of the Gelfand-Fuchs 3-cocycle on periodic vector fields. A nontrivial embedding of the Virasoro algebra into (a completion of) q-pseudodifferential symbols is proposed. We describe q-analogs of the KP and KdV-hierarchies admitting an infinite number of conserved charges as well as q-deformed Gelfand-Dickey structures. (C) 1997 Academic Press
引用
收藏
页码:55 / 97
页数:43
相关论文
共 41 条
[21]   SPIN AND WEDGE REPRESENTATIONS OF INFINITE-DIMENSIONAL LIE-ALGEBRAS AND GROUPS - (CLIFFORD ALGEBRA-SPIN REPRESENTATION-AFFINE KAC-MOODY LIE ALGEBRA-HIGHEST WEIGHT REPRESENTATION-LINE BUNDLE) [J].
KAC, VG ;
PETERSON, DH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-PHYSICAL SCIENCES, 1981, 78 (06) :3308-3312
[22]   CYCLIC HOMOLOGY OF DIFFERENTIAL-OPERATORS, THE VIRASORO ALGEBRA AND A Q-ANALOG [J].
KASSEL, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (02) :343-356
[23]   POISSON-LIE GROUP OF PSEUDODIFFERENTIAL SYMBOLS [J].
KHESIN, B ;
ZAKHAREVICH, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 171 (03) :475-530
[24]  
KHESIN BA, 1993, CR ACAD SCI I-MATH, V315, P621
[25]  
KIRILLOV AA, 1990, PROG MATH, V92, P73
[26]  
KONTSEVICH M, 1994, MPI9430
[27]  
KRAVCHENKO OS, 1991, FUNCT ANAL APPL, V25, P83
[28]  
LECOMTE P, UNPUB CENTRAL EXTENS
[29]  
LECOMTE P, NATO ASI SERIES C, V297
[30]  
LECOMTE PBA, 1990, CR ACAD SCI I-MATH, V310, P405