Aligned carbon nanotubes by catalytic decomposition Of C2H2 over Ni-Cr alloy

被引:35
作者
Chen, B [1 ]
Wu, P [1 ]
机构
[1] Shantou Univ, Dept Phys, Shantou 515063, Guangdong, Peoples R China
关键词
carbon nanotubes; catalysts; chemical vapor deposition;
D O I
10.1016/j.carbon.2005.06.024
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
High density, well-aligned carbon nanotubes (CNTs) were prepared by thermally decomposing acetylene at 700 degrees C with the help of Ni Cr alloy as catalyst in a thermal chemical vapor deposition system. The density and alignment of CNTs were characterized by scanning electron microscope (SEM). It was found that the density of the CNTs could be remarkably increased and the alignment could be improved with the decrease of the thickness ratio of Ni:Cr. Also found in our experiment was that the catalyst encapsulated in CNT was single crystal Ni, which was confirmed by high-resolution transmission electron microscopy (HRTEM) and electron dispersion X-ray spectrum (EDX). Finally, the growth mode of CNTs was discussed based on the Ni-Cr alloy catalysts under our experimental conditions. The results are helpful in providing a better understanding of the acting of catalyst and the controlling of the desirable density and alignment of CNTs for various applications. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3172 / 3177
页数:6
相关论文
共 27 条
[1]   CATALYTIC GROWTH OF CARBON FILAMENTS [J].
BAKER, RTK .
CARBON, 1989, 27 (03) :315-323
[2]   NUCLEATION AND GROWTH OF CARBON DEPOSITS FROM NICKEL CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
BARBER, MA ;
WAITE, RJ ;
HARRIS, PS ;
FEATES, FS .
JOURNAL OF CATALYSIS, 1972, 26 (01) :51-&
[3]   FORMATION OF FILAMENTOUS CARBON FROM IRON, COBALT AND CHROMIUM CATALYZED DECOMPOSITION OF ACETYLENE [J].
BAKER, RTK ;
HARRIS, PS ;
THOMAS, RB ;
WAITE, RJ .
JOURNAL OF CATALYSIS, 1973, 30 (01) :86-95
[4]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[5]   Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure [J].
Chen, HB ;
Lin, JD ;
Cai, Y ;
Wang, XY ;
Yi, J ;
Wang, J ;
Wei, G ;
Lin, YZ ;
Liao, DW .
APPLIED SURFACE SCIENCE, 2001, 180 (3-4) :328-335
[6]   Large-scale synthesis of single-wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method [J].
Colomer, JF ;
Stephan, C ;
Lefrant, S ;
Van Tendeloo, G ;
Willems, I ;
Kónya, Z ;
Fonseca, A ;
Laurent, C ;
Nagy, JB .
CHEMICAL PHYSICS LETTERS, 2000, 317 (1-2) :83-89
[7]   Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition [J].
Cui, H ;
Eres, G ;
Howe, JY ;
Puretkzy, A ;
Varela, M ;
Geohegan, DB ;
Lowndes, DH .
CHEMICAL PHYSICS LETTERS, 2003, 374 (3-4) :222-228
[8]   Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J].
Dal, HJ ;
Rinzler, AG ;
Nikolaev, P ;
Thess, A ;
Colbert, DT ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1996, 260 (3-4) :471-475
[9]   Multilayered metal catalysts for controlling the density of single-walled carbon nanotube growth [J].
Delzeit, L ;
Chen, B ;
Cassell, A ;
Stevens, R ;
Nguyen, C ;
Meyyappan, M .
CHEMICAL PHYSICS LETTERS, 2001, 348 (5-6) :368-374
[10]  
ENDO M, 1988, CHEMTECH, V18, P568