Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes

被引:109
作者
Wu, Wei [1 ,2 ]
Yu, Qingkai [1 ,3 ]
Peng, Peng [2 ]
Liu, Zhihong [3 ]
Bao, Jiming [2 ]
Pei, Shin-Shem [1 ,2 ]
机构
[1] Univ Houston, Ctr Adv Mat, Houston, TX 77204 USA
[2] Univ Houston, Dept Elect & Comp Engn, Houston, TX 77204 USA
[3] Texas State Univ, Ingram Sch Engn & Mat Sci, Engn & Commercializat Program, San Marcos, TX 78666 USA
关键词
LARGE-AREA; EPITAXIAL GRAPHENE; CARBON NANOSHEETS; TRANSISTORS; BOUNDARIES; TRANSPORT; STRENGTH; SINGLE; FOILS;
D O I
10.1088/0957-4484/23/3/035603
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Large-scale and transferable graphene films grown on metal substrates by chemical vapor deposition (CVD) still hold great promise for future nanotechnology. To realize the promise, one of the key issues is to further improve the quality of graphene, e. g., uniform thickness, large grain size, and low defects. Here we grow graphene films on Cu foils by CVD at ambient pressure, and study the graphene nucleation and growth processes under different concentrations of carbon precursor. On the basis of the results, we develop a two-step ambient pressure CVD process to synthesize continuous single-layer graphene films with large grain size (up to hundreds of square micrometers). Scanning electron microscopy and Raman spectroscopy characterizations confirm the film thickness and uniformity. The transferred graphene films on cover glass slips show high electrical conductivity and high optical transmittance that make them suitable as transparent conductive electrodes. The growth mechanism of CVD graphene on Cu is also discussed, and a growth model has been proposed. Our results provide important guidance toward the synthesis of high quality uniform graphene films, and could offer a great driving force for graphene based applications.
引用
收藏
页数:8
相关论文
共 39 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst [J].
Bhaviripudi, Sreekar ;
Jia, Xiaoting ;
Dresselhaus, Mildred S. ;
Kong, Jing .
NANO LETTERS, 2010, 10 (10) :4128-4133
[3]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[4]   Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization [J].
Cao, Helin ;
Yu, Qingkai ;
Jauregui, L. A. ;
Tian, J. ;
Wu, W. ;
Liu, Z. ;
Jalilian, R. ;
Benjamin, D. K. ;
Jiang, Z. ;
Bao, J. ;
Pei, S. S. ;
Chen, Yong P. .
APPLIED PHYSICS LETTERS, 2010, 96 (12)
[5]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[6]   Epitaxial Graphene on Cu(111) [J].
Gao, Li ;
Guest, Jeffrey R. ;
Guisinger, Nathan P. .
NANO LETTERS, 2010, 10 (09) :3512-3516
[7]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[8]   Anomalous Strength Characteristics of Tilt Grain Boundaries in Graphene [J].
Grantab, Rassin ;
Shenoy, Vivek B. ;
Ruoff, Rodney S. .
SCIENCE, 2010, 330 (6006) :946-948
[9]   Large-scale pattern growth of graphene films for stretchable transparent electrodes [J].
Kim, Keun Soo ;
Zhao, Yue ;
Jang, Houk ;
Lee, Sang Yoon ;
Kim, Jong Min ;
Kim, Kwang S. ;
Ahn, Jong-Hyun ;
Kim, Philip ;
Choi, Jae-Young ;
Hong, Byung Hee .
NATURE, 2009, 457 (7230) :706-710
[10]   Measurement of the elastic properties and intrinsic strength of monolayer graphene [J].
Lee, Changgu ;
Wei, Xiaoding ;
Kysar, Jeffrey W. ;
Hone, James .
SCIENCE, 2008, 321 (5887) :385-388