Oxygen Surface Functionalization of Graphene Nanoribbons for Transport Gap Engineering

被引:25
作者
Cresti, Alessandro [1 ]
Lopez-Bezanilla, Alejandro [2 ]
Ordejon, Pablo [3 ]
Roche, Stephan [4 ,5 ,6 ]
机构
[1] IMEP LAHC UMR CNRS INPG UJF 5130, Grenoble INP Minatec, F-38016 Grenoble, France
[2] Oak Ridge Natl Lab, Oak Ridge, TN 37831 USA
[3] CIN2 CSIC ICN Barcelona, E-08193 Barcelona, Spain
[4] CIN2 ICN CSIC, Bellaterra 08193, Barcelona, Spain
[5] Univ Autonoma Barcelona, Catalan Inst Nanotechnol, Bellaterra 08193, Barcelona, Spain
[6] Inst Catalana Recerca & Estudis Avancats, ICREA, Barcelona 08010, Spain
关键词
graphene nanoribbons; functionalization; quantum transport; mobility gap; numerical simulation; CARBON NANOTUBES;
D O I
10.1021/nn203573y
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We numerically investigate the impact of epoxide adsorbates on the transport properties of graphene nanoribbons with width varying from a few nanometers to 15 nm. For the wider ribbons, a scaling analysis of conductance properties Is performed for adsorbate density ranging from 0.1% to 0.5%. Oxygen atoms Introduce a large electron-hole transport asymmetry' with mean free paths changing by up to 1 order of magnitude, depending on the hole or electron nature of charge carriers. The opening of a transport gap on the electron side for GNRs as wide as 15 nm could be further exploited to control current flow and achieve larger ON/OFF ratios, despite the initially small intrinsic energy gap. The effect of the adsorbates in narrow ribbons is also Investigated by full ab initio calculations to explore the limit of ultimate downsized systems. In this case, the inhomogeneous distribution of adsorbates and their interplay with the ribbon edge are found to play an Important role.
引用
收藏
页码:9271 / 9277
页数:7
相关论文
共 33 条
[21]   Chemically enriched graphene-based switching devices: A novel principle driven by impurity-induced quasibound states and quantum coherence [J].
Roche, Stephan ;
Biel, Blanca ;
Cresti, Alessandro ;
Triozon, Francois .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2012, 44 (06) :960-962
[22]   NANOELECTRONICS Graphene gets a better gap [J].
Roche, Stephan .
NATURE NANOTECHNOLOGY, 2011, 6 (01) :8-9
[23]  
Schwierz F, 2010, NAT NANOTECHNOL, V5, P487, DOI [10.1038/NNANO.2010.89, 10.1038/nnano.2010.89]
[24]   Electrochemical Unzipping of Multi-walled Carbon Nanotubes for Facile Synthesis of High-Quality Graphene Nanoribbons [J].
Shinde, Dhanraj B. ;
Debgupta, Joyashish ;
Kushwaha, Ajay ;
Aslam, Mohammed ;
Pillai, Vijayamohanan K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (12) :4168-4171
[25]   The SIESTA method for ab initio order-N materials simulation [J].
Soler, JM ;
Artacho, E ;
Gale, JD ;
García, A ;
Junquera, J ;
Ordejón, P ;
Sánchez-Portal, D .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (11) :2745-2779
[26]   Energy gaps in graphene nanoribbons [J].
Son, Young-Woo ;
Cohen, Marvin L. ;
Louie, Steven G. .
PHYSICAL REVIEW LETTERS, 2006, 97 (21)
[27]   High On/Off Ratios in Bilayer Graphene Field Effect Transistors Realized by Surface Dopants [J].
Szafranek, B. N. ;
Schall, D. ;
Otto, M. ;
Neumaier, D. ;
Kurz, H. .
NANO LETTERS, 2011, 11 (07) :2640-2643
[28]   Electronic transport properties of carbon nanotube based metal/semiconductor/metal intramolecular junctions [J].
Triozon, F ;
Lambin, P ;
Roche, S .
NANOTECHNOLOGY, 2005, 16 (02) :230-233
[29]   Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors [J].
Wang, Xinran ;
Ouyang, Yijian ;
Li, Xiaolin ;
Wang, Hailiang ;
Guo, Jing ;
Dai, Hongjie .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)
[30]  
Wehling TO, 2008, NANO LETT, V8, P173, DOI [10.1021/nl072364w, 10.1021/nL072364w]