MoS2-reduced graphene oxide composites via microwave assisted synthesis for sodium ion battery anode with improved capacity and cycling performance

被引:169
作者
Qin, Wei [1 ]
Chen, Taiqiang [1 ]
Pan, Likun [1 ]
Niu, Lengyuan [2 ]
Hu, Bingwen [1 ]
Li, Dongsheng [1 ]
Li, Jinliang [1 ]
Sun, Zhuo [1 ]
机构
[1] E China Normal Univ, Engn Res Ctr Nanophoton & Adv Instrument, Dept Phys, Shanghai Key Lab Magnet Resonance,Minist Educ, Shanghai 200062, Peoples R China
[2] China Jiliang Univ, Coll Mat Sci & Engn, Inst Coordinat Bond Metrol & Engn, Hangzhou 310018, Zhejiang, Peoples R China
关键词
MoS2-reduced graphene oxide; microwave assisted synthesis; sodium ion battery; anode material; RATE CAPABILITY; METAL-OXIDES; LOW-COST; MOS2; ELECTRODES; NANOSHEETS; EFFICIENT;
D O I
10.1016/j.electacta.2014.11.034
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
MoS2-reduced graphene oxide (RGO) composites were synthesized via a facile microwave assisted reduction of graphene oxide in MoS2 precursor solution and subsequent annealing in N-2/H-2 atmosphere at 800 degrees C for 2 h. Their morphology, structure and electrochemical performance were characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, Raman spectroscopy, N-2 adsorption-desorption isotherm, cyclic voltammetry and electrochemical impedance spectroscopy. The MoS2-RGO composites with different RGO loadings were applied as anode materials of sodium ion batteries (SIBs) and they exhibit a maximum reversible specific capacity of about 305mAhg(-1) at a current density of 100mA g(-1) after 50 cycles and excellent rate performance. The results demonstrate that MoS2-RGO could be a potential electrode material for rechargeable SIBs. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:55 / 61
页数:7
相关论文
共 50 条
[1]   Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material [J].
Abel, Paul R. ;
Lin, Yong-Mao ;
de Souza, Tania ;
Chou, Chia-Yun ;
Gupta, Asha ;
Goodenough, John B. ;
Hwang, Gyeong S. ;
Heller, Adam ;
Mullins, C. Buddie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (37) :18885-18890
[2]   Effective Liquid-Phase Exfoliation and Sodium Ion Battery Application of MoS2 Nanosheets [J].
Bang, Gyeong Sook ;
Nam, Kwan Woo ;
Kim, Jong Yun ;
Shin, Jongwoo ;
Choi, Jang Wook ;
Choi, Sung-Yool .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (10) :7084-7089
[3]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[4]   Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries [J].
Chen, Taiqiang ;
Pan, Likun ;
Lu, Ting ;
Fu, Conglong ;
Chua, Daniel H. C. ;
Sun, Zhuo .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (05) :1263-1267
[5]   Negative electrodes for Na-ion batteries [J].
Dahbi, Mouad ;
Yabuuchi, Naoaki ;
Kubota, Kei ;
Tokiwa, Kazuyasu ;
Komaba, Shinichi .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (29) :15007-15028
[6]   MoS2/Graphene Composite Paper for Sodium-Ion Battery Electrodes [J].
David, Lamuel ;
Bhandavat, Romil ;
Singh, Gurpreet .
ACS NANO, 2014, 8 (02) :1759-1770
[7]   α-MoO3: A high performance anode material for sodium-ion batteries [J].
Hariharan, Srirama ;
Saravanan, Kuppan ;
Balaya, Palani .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 31 :5-9
[8]   Emerging Device Applications for Semiconducting Two-Dimensional Transition Metal Dichalcogenides [J].
Jariwala, Deep ;
Sangwan, Vinod K. ;
Lauhon, Lincoln J. ;
Marks, Tobin J. ;
Hersam, Mark C. .
ACS NANO, 2014, 8 (02) :1102-1120
[9]   Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries [J].
Jian, Zelang ;
Zhao, Bin ;
Liu, Pan ;
Li, Fujun ;
Zheng, Mingbo ;
Chen, Mingwei ;
Shi, Yi ;
Zhou, Haoshen .
CHEMICAL COMMUNICATIONS, 2014, 50 (10) :1215-1217
[10]   Transition metal oxides for high performance sodium ion battery anodes [J].
Jiang, Yinzhu ;
Hu, Meijuan ;
Zhang, Dan ;
Yuan, Tianzhi ;
Sun, Wenping ;
Xu, Ben ;
Yan, Mi .
NANO ENERGY, 2014, 5 :60-66