Genetic algorithm-based training for semi-supervised SVM

被引:26
作者
Adankon, Mathias M. [1 ]
Cheriet, Mohamed [1 ]
机构
[1] Univ Quebec, Ecole Technol Super, Synchromedia Lab, Montreal, PQ H3C 1K3, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Semi-supervised learning; Genetic algorithm; Support vector machine; SVM;
D O I
10.1007/s00521-010-0358-8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Support Vector Machine (SVM) is an interesting classifier with excellent power of generalization. In this paper, we consider applying the SVM to semi-supervised learning. We propose using an additional criterion with the standard formulation of the semi-supervised SVM (S (3) VM) to reinforce classifier regularization. Since, we deal with nonconvex and combinatorial problem, we use a genetic algorithm to optimize the objective function. Furthermore, we design the specific genetic operators and certain heuristics in order to improve the optimization task. We tested our algorithm on both artificial and real data and found that it gives promising results in comparison with classical optimization techniques proposed in literature.
引用
收藏
页码:1197 / 1206
页数:10
相关论文
共 32 条
[21]   Evolutionary tuning of multiple SVM parameters [J].
Friedrichs, F ;
Igel, C .
NEUROCOMPUTING, 2005, 64 :107-117
[22]   Feature selection for support vector machines by means of genetic algorithms [J].
Fröhlich, H ;
Chapelle, O ;
Schölkopf, B .
15TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2003, :142-148
[23]  
Golberg D. E., 1989, GENETIC ALGORITHMS S, V1989, P36
[24]  
Grandvalet Y., 2004, ADV NEURAL INF PROCE, V17
[25]  
Hein M, 2007, J MACH LEARN RES, V8, P1325
[26]  
Holland J.H., 1992, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence
[27]  
Joachims T, 1999, MACHINE LEARNING, PROCEEDINGS, P200
[28]   Evolutionary tuning of SVM parameter values in multiclass problems [J].
Lorena, Ana Carolina ;
de Carvalho, Andre C. P. L. F. .
NEUROCOMPUTING, 2008, 71 (16-18) :3326-3334
[29]  
Scholkopf B., 2002, LEARNING KERNELS SUP
[30]  
Seeger M., 2001, LEARNING LABELED UNL