An implicit Vlasov-Fokker-Planck code to model non-local electron transport in 2-D with magnetic fields

被引:79
作者
Kingham, RJ [1 ]
Bell, AR [1 ]
机构
[1] Univ London Imperial Coll Sci & Technol, Blackett Lab, Plasma Phys Grp, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
finite difference scheme; implicit; sparse matrix; Fokker-Planck; Vlasov; magnetic field; Maxwell's equations; plasma; electron transport; non-local;
D O I
10.1016/j.jcp.2003.08.017
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We describe an implicit finite-difference scheme for solving the Vlasov-Fokker-Planck equation and Maxwell's equations in 2 spatial dimensions including, for the first time, self-consistent magnetic fields. These equations model the coupled phenomena of magnetic field generation and magnetised electron transport in collisional plasmas, such as laser-produced plasmas, in the non-relativistic limit. The kinetic description of the plasma enables the scheme to properly describe these phenomena in the regime where the temperature and density scale lengths become comparable to the transport mean-free-path. In addition to including the self-consistent magnetic field, other improvements over previous Fokker-Planck codes have been made which result in a robust scheme that can work with a large time step. The scheme employs Cartesian geometry and solves for the electromagnetic field components E-x E-y and B-z. Extension to all field components and cylindrical geometry is possible. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 34
页数:34
相关论文
共 63 条
[1]   ELECTRON ENERGY-TRANSPORT IN STEEP TEMPERATURE-GRADIENTS IN LASER-PRODUCED PLASMAS [J].
BELL, AR ;
EVANS, RG ;
NICHOLAS, DJ .
PHYSICAL REVIEW LETTERS, 1981, 46 (04) :243-246
[2]   Resistive collimation of electron beams in laser-produced plasmas [J].
Bell, AR ;
Kingham, RJ .
PHYSICAL REVIEW LETTERS, 2003, 91 (03)
[3]   Fast-electron transport in high-intensity short-pulse laser-solid experiments [J].
Bell, AR ;
Davies, JR ;
Guerin, S ;
Ruhl, H .
PLASMA PHYSICS AND CONTROLLED FUSION, 1997, 39 (05) :653-659
[4]  
BIERMANN L, 1950, Z NATURFORSCH A, V5, P65
[5]  
Birdsall C. K., 2018, Plasma Physics via Computer Simulation
[6]   MAGNETOHYDRODYNAMICS IN LASER FUSION - FLUID MODELING OF ENERGY-TRANSPORT IN LASER TARGETS [J].
BRACKBILL, JU ;
GOLDMAN, SR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :415-436
[7]   AN IMPLICIT METHOD FOR ELECTROMAGNETIC PLASMA SIMULATION IN 2 DIMENSIONS [J].
BRACKBILL, JU ;
FORSLUND, DW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1982, 46 (02) :271-308
[8]  
Braginskii S. I., 1965, REV PLASMA PHYS, V1, P205, DOI DOI 10.1088/0741-3335/47/10/005
[9]   Fast algorithms for numerical, conservative, and entropy approximations of the Fokker-Planck-Landau equation [J].
Buet, C ;
Cordier, S ;
Degond, P ;
Lemou, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1997, 133 (02) :310-322
[10]   An implicit energy-conservative 2D Fokker-Planck algorithm -: I.: Difference scheme [J].
Chacón, L ;
Barnes, DC ;
Knoll, DA ;
Miley, GH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 157 (02) :618-653