Raman spectroscopy of optical phonon confinement in nanostructured materials

被引:351
作者
Arora, Akhilesh K. [1 ]
Rajalakshmi, M. [1 ]
Ravindran, T. R. [1 ]
Sivasubramanian, V. [1 ]
机构
[1] Indira Gandhi Ctr Atom Res, Mat Sci Div, Kalpakkam 603102, Tamil Nadu, India
关键词
phonon confinement; nanostructured materials; nanoparticles; vibrational spectroscopy;
D O I
10.1002/jrs.1684
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
If the medium surrounding a nano-grain does not support the vibrational wavenumbers of a material, the optical and acoustic phonons get confined within the grain of the nanostructured material. This leads to interesting changes in the vibrational spectrum of the nanostructured material as compared to that of the bulk. Absence of periodicity beyond the particle dimension relaxes the zone-centre optical phonon selection rule, causing the Raman spectrum to have contributions also from phonons away from the Brillouin-zone centre. Theoretical models and calculations suggest that the confinement results in asymmetric broadening and shift of the optical phonon Raman line, the magnitude of which depends on the widths of the corresponding phonon dispersion curves. This has been confirmed for zinc oxide nanoparticles. Microscopic lattice dynamical calculations of the phonon amplitude and Raman spectra using the bond-polarizability model suggest a power-law dependence of the peak-shift on the particle size. This article reviews recent results on the Raman spectroscopic investigations of optical phonon confinement in several nanocrystalline semiconductor and ceramic/dielectric materials, including those in selenium, cadmium sulphide, zinc oxide, thorium oxide, and nano-diamond. Resonance Raman scattering from confined optical phonons is also discussed. Copyright (c) 2007 John Wiley & Sons, Ltd.
引用
收藏
页码:604 / 617
页数:14
相关论文
共 155 条
[41]   Temperature-dependent Raman scattering studies in ZnSe nanoparticles [J].
Fu, XG ;
An, HZ ;
Du, WM .
MATERIALS LETTERS, 2005, 59 (12) :1484-1490
[42]   Phonons in nanocrystalline Fe-57 [J].
Fultz, B ;
Ahn, CC ;
Alp, EE ;
Sturhahn, W ;
Toellner, TS .
PHYSICAL REVIEW LETTERS, 1997, 79 (05) :937-940
[43]   MODEL FOR LONG-WAVELENGTH OPTICAL-PHONON MODES OF MIXED-CRYSTALS [J].
GENZEL, L ;
MARTIN, TP ;
PERRY, CH .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 1974, 62 (01) :83-92
[44]  
Giner C. T., 1998, PHYS REV B, V57, P4664
[45]   BOND CHARGE, BOND POLARIZABILITY, AND PHONON SPECTRA IN SEMICONDUCTORS [J].
GO, S ;
BILZ, H ;
CARDONA, M .
PHYSICAL REVIEW LETTERS, 1975, 34 (10) :580-583
[46]  
GOUADEC G, 2007, IN PRESS PROG CRYST, V53
[47]   RESONANT RAMAN-SCATTERING FROM ZNTE MICROCRYSTALS - EVIDENCE FOR QUANTUM SIZE EFFECTS [J].
HAYASHI, S ;
SANDA, H ;
AGATA, M ;
YAMAMOTO, K .
PHYSICAL REVIEW B, 1989, 40 (08) :5544-5548
[48]   RAMAN-SCATTERING FROM THE SURFACE PHONON MODE IN GAP MICRO-CRYSTALS [J].
HAYASHI, S ;
KANAMORI, H .
PHYSICAL REVIEW B, 1982, 26 (12) :7079-7082
[49]   TEMPERATURE-DEPENDENCE OF THE RADIATIVE LIFETIME IN POROUS SILICON [J].
HOOFT, GW ;
KESSENER, YARR ;
RIKKEN, GLJA ;
VENHUIZEN, AHJ .
APPLIED PHYSICS LETTERS, 1992, 61 (19) :2344-2346
[50]   Magnetic force microscopy study of interactions in 100 nm period nanomagnet arrays [J].
Hwang, M ;
Abraham, MC ;
Savas, TA ;
Smith, HI ;
Ram, RJ ;
Ross, CA .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :5108-5110