Semiparametric log-linear regression for longitudinal measurements subject to outcome-dependent follow-up

被引:11
作者
Buzkova, Petra [1 ]
Lumley, Thomas [1 ]
机构
[1] Univ Washington, Dept Biostat, Seattle, WA 98195 USA
关键词
log-linear regression; longitudinal data; marginal regression; outcome-dependent follow-up; semiparametric regression; time-varying covariates;
D O I
10.1016/j.jspi.2007.10.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A common problem for longitudinal data analyses is that subjects follow-up is irregular, often related to the past outcome or other factors associated with the outcome measure that are not included in the regression model. Analyses unadjusted for outcome-dependent follow-up yield biased estimates. We propose a longitudinal data analysis that can provide consistent estimates in regression models that are subject to outcome-dependent follow-up. We focus on semiparametric marginal log-link regression with arbitrary unspecified baseline function. Based on estimating equations, the proposed class of estimators are root n consistent and asymptotically normal. We present simulation studies that assess the performance of the estimators under finite samples. We illustrate our approach using data from a health services research study. (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:2450 / 2461
页数:12
相关论文
共 11 条
[1]  
Buzková P, 2007, CAN J STAT, V35, P485
[2]   A note on fitting a marginal model to mixed effects log-linear regression data via GEE [J].
Gromping, U .
BIOMETRICS, 1996, 52 (01) :280-285
[3]   Estimating the causal effect of zidovudine on CD4 count with a marginal structural model for repeated measures [J].
Hernán, MA ;
Brumback, BA ;
Robins, JM .
STATISTICS IN MEDICINE, 2002, 21 (12) :1689-1709
[4]  
LIANG KY, 1986, BIOMETRIKA, V73, P13, DOI 10.1093/biomet/73.1.13
[5]   Semiparametric and nonparametric regression analysis of longitudinal data [J].
Lin, DY ;
Ying, Z .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (453) :103-113
[6]   Semiparametric regression for clustered data [J].
Lin, XH ;
Carroll, RJ .
BIOMETRIKA, 2001, 88 (04) :1179-1185
[7]   Semiparametric regression for clustered data using generalized estimating equations [J].
Lin, XH ;
Carroll, RJ .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2001, 96 (455) :1045-1056
[8]   A note on marginal linear regression with correlated response data [J].
Pan, W ;
Louis, TA ;
Connett, JE .
AMERICAN STATISTICIAN, 2000, 54 (03) :191-195
[9]   A CAUTIONARY NOTE ON INFERENCE FOR MARGINAL REGRESSION-MODELS WITH LONGITUDINAL DATA AND GENERAL CORRELATED RESPONSE DATA [J].
PEPE, MS ;
ANDERSON, GL .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1994, 23 (04) :939-951
[10]  
Robins JM., 1999, Statistical models in Epidemiology, the Environment, and Clinical Trials, DOI [10.1007/978-1-4612-1284-3_2, DOI 10.1007/978-1-4612-1284-3_2]