Fluorographene: A Wide Bandgap Semiconductor with Ultraviolet Luminescence

被引:405
作者
Jeon, Ki-Joon [1 ]
Lee, Zonghoon [2 ]
Pollak, Elad [1 ]
Moreschini, Luca
Bostwick, Aaron
Park, Cheol-Min [1 ,3 ]
Mendelsberg, Rueben [4 ]
Radmilovic, Velimir [2 ]
Kostecki, Robert [1 ]
Richardson, Thomas J. [1 ]
Rotenberg, Eli
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Lab, Environm Energy Technol Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[3] Kumoh Natl Inst Technol, Sch Adv Mat & Syst Engn, Gumi 730701, Gyeongbuk, South Korea
[4] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
基金
瑞士国家科学基金会;
关键词
fluorographene; ultraviolet luminescence; wide bandgap semiconductor; NEXAFS; GRAPHENE;
D O I
10.1021/nn1025274
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The manipulation of the bandgap of graphene by various means has stirred great interest for potential applications. Here we show that treatment of graphene with xenon difluoride produces a partially fluorinated graphene (fluorographene) with covalent C-F bonding and local sp(3)-carbon hybridization. The material was characterized by Fourier transform Infrared spectroscopy, Raman spectroscopy, electron energy loss spectroscopy, photoluminescence spectroscopy, and near edge X-ray absorption spectroscopy. These results confirm the structural features of the fluorographane with a bandgap of 3.8 eV, close to that calculated for fluorinated single layer graphene, (CF)(n). The material luminesces broadly in the UV and visible light regions, and has optical properties resembling diamond, with both excitonic and direct optical absorption and emission features. These results suggest the use of fluorographane as a new, readily prepared material for electronic, optoelectronic applications, and energy harvesting applications.
引用
收藏
页码:1042 / 1046
页数:5
相关论文
共 30 条
[1]   Honeycomb Carbon: A Review of Graphene [J].
Allen, Matthew J. ;
Tung, Vincent C. ;
Kaner, Richard B. .
CHEMICAL REVIEWS, 2010, 110 (01) :132-145
[2]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[3]   Plasma Fluorination of Chemically Derived Graphene Sheets and Subsequent Modification With Butylamine [J].
Bon, Silvia Bittolo ;
Valentini, Luca ;
Verdejo, Raquel ;
Garcia Fierro, Jose L. ;
Peponi, Laura ;
Lopez-Manchado, Miguel A. ;
Kenny, Jose M. .
CHEMISTRY OF MATERIALS, 2009, 21 (14) :3433-3438
[4]   Hydrogen on graphene: Electronic structure, total energy, structural distortions and magnetism from first-principles calculations [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Lichtenstein, A. I. .
PHYSICAL REVIEW B, 2008, 77 (03)
[5]   Near-edge x-ray absorption of carbon materials for determining bond hybridization In mixed sp2/sp3 bonded materials [J].
Coffman, FL ;
Cao, R ;
Pianetta, PA ;
Kapoor, S ;
Kelly, M ;
Terminello, LJ .
APPLIED PHYSICS LETTERS, 1996, 69 (04) :568-570
[6]   Clean and highly ordered graphene synthesized in the gas phase [J].
Dato, Albert ;
Lee, Zonghoon ;
Jeon, Ki-Joon ;
Erni, Rolf ;
Radmilovic, Velimir ;
Richardson, Thomas J. ;
Frenklach, Michael .
CHEMICAL COMMUNICATIONS, 2009, (40) :6095-6097
[7]  
DENGYU P, ADV MAT, V22, P734
[8]   Blue Photoluminescence from Chemically Derived Graphene Oxide [J].
Eda, Goki ;
Lin, Yun-Yue ;
Mattevi, Cecilia ;
Yamaguchi, Hisato ;
Chen, Hsin-An ;
Chen, I-Sheng ;
Chen, Chun-Wei ;
Chhowalla, Manish .
ADVANCED MATERIALS, 2010, 22 (04) :505-+
[9]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)