Aβ42-lowering nonsteroidal anti-inflammatory drugs preserve intramembrane cleavage of the amyloid precursor protein (APP) and ErbB-4 receptor and signaling through the APP intracellular domain

被引:111
作者
Weggen, S [1 ]
Eriksen, JL
Sagi, SA
Pietrzik, CU
Golde, TE
Koo, EH
机构
[1] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
[2] Mayo Clin, Dept Neurosci & Pharmacol, Jacksonville, FL 32224 USA
关键词
D O I
10.1074/jbc.M304824200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Epidemiological studies indicate that long term use of nonsteroidal anti-inflammatory drugs (NSAIDs) confers protection from Alzheimer's disease, and some NSAIDs were shown to specifically decrease production of the amyloidogenic Abeta42 peptide, most likely by direct modulation of gamma-secretase activity. In contrast to gamma-secretase inhibitors, Abeta42-lowering NSAIDs do not impair S3 cleavage in the NOTCH receptor and release of the NOTCH intracellular domain, a finding with conceptual implications for the development of safer drugs targeting Abeta production through gamma-secretase modulation. Intramembrane cleavage and release of an intracellular signaling domain has recently been demonstrated in a number of additional gamma-secretase substrates. We now show in cell-based assays that intramembrane cleavage of APP and ErbB-4 receptor is not impaired by the Abeta42-lowering NSAIDs, sulindac sulfide and ibuprofen. Generation of the APP intracellular domain (AICD) was further not inhibited in a cell-free assay at concentrations far exceeding those effective in reducing Abeta42 production. Closer inspection of AICD signaling showed that stabilization of the AICD peptide by FE65 and AICD-mediated transcription were also retained at Abeta42-lowering concentrations. These results demonstrate that S3-like/intramembrane cleavage is preserved by Abeta42-lowering NSAIDs in at least three substrates of gamma-secretase APP, ErbB-4, and NOTCH and underline the striking specificity by which these drugs target Abeta42 production.
引用
收藏
页码:30748 / 30754
页数:7
相关论文
共 59 条
[1]   Inflammation and Alzheimer's disease [J].
Akiyama, H ;
Barger, S ;
Barnum, S ;
Bradt, B ;
Bauer, J ;
Cole, GM ;
Cooper, NR ;
Eikelenboom, P ;
Emmerling, M ;
Fiebich, BL ;
Finch, CE ;
Frautschy, S ;
Griffin, WST ;
Hampel, H ;
Hull, M ;
Landreth, G ;
Lue, LF ;
Mrak, R ;
Mackenzie, IR ;
McGeer, PL ;
O'Banion, MK ;
Pachter, J ;
Pasinetti, G ;
Plata-Salaman, C ;
Rogers, J ;
Rydel, R ;
Shen, Y ;
Streit, W ;
Strohmeyer, R ;
Tooyoma, I ;
Van Muiswinkel, FL ;
Veerhuis, R ;
Walker, D ;
Webster, S ;
Wegrzyniak, B ;
Wenk, G ;
Wyss-Coray, T .
NEUROBIOLOGY OF AGING, 2000, 21 (03) :383-421
[2]   A cell biological perspective on Alzheimer's disease [J].
Annaert, W ;
De Strooper, B .
ANNUAL REVIEW OF CELL AND DEVELOPMENTAL BIOLOGY, 2002, 18 :25-51
[3]   Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-κB and β-amyloid precursor protein [J].
Baek, SH ;
Ohgi, KA ;
Rose, DW ;
Koo, EH ;
Glass, CK ;
Rosenfeld, MG .
CELL, 2002, 110 (01) :55-67
[4]   Regulated intramembrane proteolysis: A control mechanism conserved from bacteria to humans [J].
Brown, MS ;
Ye, J ;
Rawson, RB ;
Goldstein, JL .
CELL, 2000, 100 (04) :391-398
[5]   A transcriptively active complex of APP with Fe65 and histone acetyltransferase Tip60 [J].
Cao, XW ;
Südhof, TC .
SCIENCE, 2001, 293 (5527) :115-120
[6]   Alzheimer's disease: treatments in discovery and development [J].
Citron, M .
NATURE NEUROSCIENCE, 2002, 5 (Suppl 11) :1055-1057
[7]   The amyloid precursor protein (APP)-cytoplasmic fragment generated by γ-secretase is rapidly degraded but distributes partially in a nuclear fraction of neurones in culture [J].
Cupers, P ;
Orlans, I ;
Craessaerts, K ;
Annaert, W ;
De Strooper, B .
JOURNAL OF NEUROCHEMISTRY, 2001, 78 (05) :1168-1178
[8]   A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain [J].
De Strooper, B ;
Annaert, W ;
Cupers, P ;
Saftig, P ;
Craessaerts, K ;
Mumm, JS ;
Schroeter, EH ;
Schrijvers, V ;
Wolfe, MS ;
Ray, WJ ;
Goate, A ;
Kopan, R .
NATURE, 1999, 398 (6727) :518-522
[9]   Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein [J].
De Strooper, B ;
Saftig, P ;
Craessaerts, K ;
Vanderstichele, H ;
Guhde, G ;
Annaert, W ;
Von Figura, K ;
Van Leuven, F .
NATURE, 1998, 391 (6665) :387-390
[10]   Presenilin-dependent γ-secretase activity modulates thymocyte development [J].
Doerfler, P ;
Shearman, MS ;
Perlmutter, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (16) :9312-9317