Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity

被引:150
作者
Chen, Po Yu [1 ]
Weinmann, Lasse [1 ]
Gaidatzis, Dimos [2 ]
Pei, Yi
Zavolan, Mihaela [2 ]
Tuschl, Thomas
Meister, Gunter [1 ]
机构
[1] Rockefeller Univ, Howard Hughes Med Inst, Lab RNA Mol Biol, New York, NY 10021 USA
[2] Swiss Inst Bioinformat, CH-4056 Basel, Switzerland
关键词
RNA interference; RNAi; off-target effects; gene silencing; siRNA; RISC;
D O I
10.1261/rna.789808
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide catalytic sequence-specific cleavage of fully or nearly fully complementary target mRNAs or control translation and/or stability of many mRNAs that share 6-8 nucleotides (nt) of complementarity to the siRNA and miRNA 5' end. siRNA- and miRNA-containing ribonucleoprotein silencing complexes are assembled from double-stranded 21- to 23-nt RNase III processing intermediates that carry 5' phosphates and 2-nt overhangs with free 3' hydroxyl groups. Despite the structural symmetry of a duplex siRNA, the nucleotide sequence asymmetry can generate a bias for preferred loading of one of the two duplex-forming strands into the RNA-induced silencing complex (RISC). Here we show that the 5'-phosphorylation status of the siRNA strands also acts as an important determinant for strand selection. 5'-O-methylated siRNA duplexes refractory to 5' phosphorylation were examined for their biases in siRNA strand selection. Asymmetric, single methylation of siRNA duplexes reduced the occupancy of the silencing complex by the methylated strand with concomitant elimination of its off-targeting signature and enhanced off-targeting signature of the phosphorylated strand. Methylation of both siRNA strands reduced but did not completely abolish RNA silencing, without affecting strand selection relative to that of the unmodified siRNA. We conclude that asymmetric 5' modification of siRNA duplexes can be useful for controlling targeting specificity.
引用
收藏
页码:263 / 274
页数:12
相关论文
共 81 条
[1]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[2]   3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets [J].
Birmingham, A ;
Anderson, EM ;
Reynolds, A ;
Ilsley-Tyree, D ;
Leake, D ;
Fedorov, Y ;
Baskerville, S ;
Maksimova, E ;
Robinson, K ;
Karpilow, J ;
Marshall, WS ;
Khvorova, A .
NATURE METHODS, 2006, 3 (03) :199-204
[3]   The Argonaute family: tentacles that reach into RNAi, developmental control, stem cell maintenance, and tumorigenesis [J].
Carmell, MA ;
Xuan, ZY ;
Zhang, MQ ;
Hannon, GJ .
GENES & DEVELOPMENT, 2002, 16 (21) :2733-2742
[4]   TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing [J].
Chendrimada, TP ;
Gregory, RI ;
Kumaraswamy, E ;
Norman, J ;
Cooch, N ;
Nishikura, K ;
Shiekhattar, R .
NATURE, 2005, 436 (7051) :740-744
[5]   siRNAs: Applications in functional genomics and potential as therapeutics [J].
Dorsett, Y ;
Tuschl, T .
NATURE REVIEWS DRUG DISCOVERY, 2004, 3 (04) :318-329
[6]   Extensive 3′ modification of plant small RNAs is modulated by helper component-proteinase expression [J].
Ebhardt, HA ;
Thi, EP ;
Wang, MB ;
Unrau, PJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (38) :13398-13403
[7]   High-throughput RNAi screening in cultured cells: a user's guide [J].
Echeverri, CJ ;
Perrimon, N .
NATURE REVIEWS GENETICS, 2006, 7 (05) :373-384
[8]   RNA interference is mediated by 21-and 22-nucleotide RNAs [J].
Elbashir, SM ;
Lendeckel, W ;
Tuschl, T .
GENES & DEVELOPMENT, 2001, 15 (02) :188-200
[9]   Locked nucleic acid (LNA) mediated improvements in siRNA stability and functionality [J].
Elmén, J ;
Thonberg, H ;
Ljungberg, K ;
Frieden, M ;
Westergaard, M ;
Xu, YH ;
Wahren, B ;
Liang, ZC ;
Urum, H ;
Koch, T ;
Wahlestedt, C .
NUCLEIC ACIDS RESEARCH, 2005, 33 (01) :439-447
[10]   RNAi: The nuts and bolts of the RISC machine [J].
Filipowicz, W .
CELL, 2005, 122 (01) :17-20