Probe-based ultrahigh-density storage technology

被引:105
作者
Pantazi, A. [1 ]
Sebastian, A. [1 ]
Antonakopoulos, T. A. [2 ]
Baechtold, P. [1 ]
Bonaccio, A. R. [3 ]
Bonan, J. [1 ]
Cherubini, G. [1 ]
Despont, M. [1 ]
DiPietro, R. A.
Drechsler, U. [1 ]
Duerig, U. [1 ]
Gotsmann, B. [1 ]
Haeberle, W. [1 ]
Hagleitner, C. [1 ]
Hedrick, J. L.
Jubin, D. [1 ]
Knoll, A. [1 ]
Lantz, M. A. [1 ]
Pentaralkis, J. [2 ]
Pozidis, H. [1 ]
Pratt, R. C. [4 ]
Rothuizen, H. [1 ]
Stutz, R. [1 ]
Varsamou, M. [1 ]
Wiesmann, D. [1 ]
Eleftheriou, E. [1 ]
机构
[1] IBM Corp, Div Res, Zurich Res Lab, CH-8803 Ruschlikon, Switzerland
[2] Univ Patras, Dept Elect & Comp Engn, Rion 26500, Greece
[3] IBM Syst & Technol Grp, Essex Jct, VT 05452 USA
[4] IBM Abnaden Res Ctr, Div Res, San Jose, CA 95120 USA
关键词
D O I
10.1147/rd.524.0493
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Ultrahigh storage densities can be achieved by using a thermomechanical scanning-probe-based data-storage approach to write, read back, and erase data in very thin polymer films. High data rates are achieved by parallel operation of large two-dimensional arrays of cantilevers that can be batch fabricated by silicon-surface micromachining techniques. The very high precision required to navigate the storage medium relative to the array of probes is achieved by microelectromechanical system (MEMS)-based x and y actuators. The ultrahigh storage densities offered by probe-storage devices pose a significant challenge in terms of both control design for nanoscale positioning and read-channel design for reliable signal detection. Moreover, the high parallelism necessitates new dataflow architectures to ensure high performance and reliability of the system. In this paper, we present a small-scale prototype system of a storage device that we built based on scanning-probe technology. Experimental results of multiple sectors, recorded using multiple levers at 840 Gb/in(2) and read back without errors, demonstrate the functionality of the prototype system. This is the first time a scanning-probe recording technology has reached this level of technical maturity, demonstrating the joint operation of all building blocks of a storage device.
引用
收藏
页码:493 / 511
页数:19
相关论文
共 36 条
[1]   ATOMIC FORCE MICROSCOPE [J].
BINNIG, G ;
QUATE, CF ;
GERBER, C .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :930-933
[2]   7X7 RECONSTRUCTION ON SI(111) RESOLVED IN REAL SPACE [J].
BINNIG, G ;
ROHRER, H ;
GERBER, C ;
WEIBEL, E .
PHYSICAL REVIEW LETTERS, 1983, 50 (02) :120-123
[3]   Single-chip computers with microelectromechanical systems-based magnetic memory (invited) [J].
Carley, LR ;
Bain, JA ;
Fedder, GK ;
Greve, DW ;
Guillou, DF ;
Lu, MSC ;
Mukherjee, T ;
Santhanam, S ;
Abelmann, L ;
Min, S .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :6680-6685
[4]   Wafer-scale microdevice transfer/interconnect: Its application in an AFM-based data-storage system [J].
Despont, M ;
Drechsler, U ;
Yu, R ;
Pogge, HB ;
Vettiger, P .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2004, 13 (06) :895-901
[5]   VLSI-NEMS chip for parallel AFM data storage [J].
Despont, M ;
Brugger, J ;
Drechsler, U ;
Dürig, U ;
Häberle, W ;
Lutwyche, M ;
Rothuizen, H ;
Stutz, R ;
Widmer, R ;
Binnig, G ;
Rohrer, H ;
Vettiger, P .
SENSORS AND ACTUATORS A-PHYSICAL, 2000, 80 (02) :100-107
[6]   Fundamentals of micromechanical thermoelectric sensors -: art. no. 044906 [J].
Dürig, U .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (04)
[7]   Millipede -: A MEMS-based scanning-probe data-storage system [J].
Eleftheriou, E ;
Antonakopoulos, T ;
Binnig, GK ;
Cherubini, G ;
Despont, M ;
Dholakia, A ;
Dürig, U ;
Lantz, MA ;
Pozidis, H ;
Rothuizen, HE ;
Vettiger, P .
IEEE TRANSACTIONS ON MAGNETICS, 2003, 39 (02) :938-945
[8]   Electrical probe storage using Joule heating in phase change media [J].
Gidon, S ;
Lemonnier, O ;
Rolland, B ;
Bichet, O ;
Dressler, C ;
Samson, Y .
APPLIED PHYSICS LETTERS, 2004, 85 (26) :6392-6394
[9]   Controlling nanowear in a polymer by confining segmental relaxation [J].
Gotsmann, B ;
Duerig, UT ;
Sills, S ;
Frommer, J ;
Hawker, CJ .
NANO LETTERS, 2006, 6 (02) :296-300
[10]  
Gotsmann B, 2006, NANOSCI TECHNOL, P215