Species-specific antibiotic-ribosome interactions:: implications for drug development

被引:81
作者
Wilson, DN [1 ]
Harms, JM [1 ]
Nierhaus, KH [1 ]
Schlünzen, F [1 ]
Fucini, P [1 ]
机构
[1] Max Planck Inst Mol Genet, D-14195 Berlin, Germany
关键词
antibiotics; drug; lincomycin; macrolides; protein synthesis; ribosome; streptogramin;
D O I
10.1515/BC.2005.141
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the cell, the protein synthetic machinery is a highly complex apparatus that offers many potential sites for functional interference and therefore represents a major target for antibiotics. The recent plethora of crystal structures of ribosomal subunits in complex with various antibiotics has provided unparalleled insight into their mode of interaction and inhibition. However, differences in the conformation, orientation and position of some of these drugs bound to ribosomal subunits of Deinococcus radiodurans (D50S) compared to Haloarcula marismortui (H50S) have raised questions regarding the species specificity of binding. Revisiting the structural data for the bacterial D50S-antibiotic complexes reveals that the mode of binding of the macrolides, ketolides, streptogramins and lincosamides is generally similar to that observed in the archaeal H50S structures. However, small discrepancies are observed, predominantly resulting from species-specific differences in the ribosomal proteins and rRNA constituting the drug-binding sites. Understanding how these small alterations at the binding site influence interaction with the drug will be essential for rational design of more potent inhibitors.
引用
收藏
页码:1239 / 1252
页数:14
相关论文
共 56 条
[1]   The complete atomic structure of the large ribosomal subunit at 2.4 Å resolution [J].
Ban, N ;
Nissen, P ;
Hansen, J ;
Moore, PB ;
Steitz, TA .
SCIENCE, 2000, 289 (5481) :905-920
[2]   Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action [J].
Baram, D ;
Pyetan, E ;
Sittner, A ;
Auerbach-Nevo, T ;
Bashan, A ;
Yonath, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (34) :12017-12022
[3]   Structural insight into the antibiotic action of telithromycin against resistant mutants [J].
Berisio, R ;
Harms, J ;
Schluenzen, F ;
Zarivach, R ;
Hansen, HAS ;
Fucini, P ;
Yonath, A .
JOURNAL OF BACTERIOLOGY, 2003, 185 (14) :4276-4279
[4]  
Canu A., 2001, Current Drug Targets - Infectious Disorders, V1, P215, DOI 10.2174/1568005014606152
[5]   Diversity of ribosomal mutations conferring resistance to macrolides, clindamycin, streptogramin, and telithromycin in Streptococcus pneumoniae [J].
Canu, A ;
Malbruny, B ;
Coquemont, M ;
Davies, TA ;
Appelbaum, PC ;
Leclercq, R .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (01) :125-131
[6]   Crystal structure of an initiation factor bound to the 30S ribosomal subunit [J].
Carter, AP ;
Clemons, WM ;
Brodersen, DE ;
Morgan-Warren, RJ ;
Hartsch, T ;
Wimberly, BT ;
Ramakrishnan, V .
SCIENCE, 2001, 291 (5503) :498-501
[7]   Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics [J].
Carter, AP ;
Clemons, WM ;
Brodersen, DE ;
Morgan-Warren, RJ ;
Wimberly, BT ;
Ramakrishnan, V .
NATURE, 2000, 407 (6802) :340-348
[8]  
CHINALI G, 1984, J BIOL CHEM, V259, P9563
[9]   RIBOSOMAL-PROTEIN GENE SEQUENCE CHANGES IN ERYTHROMYCIN-RESISTANT MUTANTS OF ESCHERICHIA-COLI [J].
CHITTUM, HS ;
CHAMPNEY, WS .
JOURNAL OF BACTERIOLOGY, 1994, 176 (20) :6192-6198
[10]   In vitro selection of resistance in Haemophilus influenzae by amoxicillin-clavulanate, cefpodoxime, cefprozil, azithromycin, and clarithromycin [J].
Clark, C ;
Bozdogan, B ;
Peric, M ;
Dewasse, B ;
Jacobs, MR ;
Appelbaum, PC .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2002, 46 (09) :2956-2962