Phase transition with the Berezinskii-Kosterlitz-Thouless singularity in the Ising model on a growing network

被引:32
作者
Bauer, M [1 ]
Coulomb, S
Dorogovtsev, SN
机构
[1] CEA Saclay, CNRS, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] Univ Aveiro, Dept Fis, P-3810193 Aveiro, Portugal
[3] AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
关键词
D O I
10.1103/PhysRevLett.94.200602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the ferromagnetic Ising model on a highly inhomogeneous network created by a growth process. We find that the phase transition in this system is characterized by the Berezinskii-Kosterlitz-Thouless singularity, although critical fluctuations are absent and the mean-field description is exact. Below this infinite order transition, the magnetization behaves as exp(-const/root T-c-T). We show that the critical point separates the phase with the power-law distribution of the linear response to a local field and the phase where this distribution rapidly decreases. We suggest that this phase transition occurs in a wide range of cooperative models with a strong infinite-range inhomogeneity.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Ferromagnetic phase transition in Barabasi-Albert networks [J].
Aleksiejuk, A ;
Holyst, JA ;
Stauffer, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 310 (1-2) :260-266
[2]   A simple asymmetric evolving random network [J].
Bauer, M ;
Bernard, D .
JOURNAL OF STATISTICAL PHYSICS, 2003, 111 (3-4) :703-737
[3]  
BEREZINSKII VL, 1971, SOV PHYS JETP-USSR, V32, P493
[4]   Mean field solution of the Ising model on a Barabasi-Albert network [J].
Bianconi, G .
PHYSICS LETTERS A, 2002, 303 (2-3) :166-168
[5]   The phase transition in the uniformly grown random graph has infinite order [J].
Bollobás, B ;
Janson, S ;
Riordan, O .
RANDOM STRUCTURES & ALGORITHMS, 2005, 26 (1-2) :1-36
[6]   Are randomly grown graphs really random? art. no. 041902 [J].
Callaway, DS ;
Hopcroft, JE ;
Kleinberg, JM ;
Newman, MEJ ;
Strogatz, SH .
PHYSICAL REVIEW E, 2001, 64 (04) :7
[7]   Resilience of the Internet to random breakdowns [J].
Cohen, R ;
Erez, K ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW LETTERS, 2000, 85 (21) :4626-4628
[8]   Percolation critical exponents in scale-free networks [J].
Cohen, R ;
ben-Avraham, D ;
Havlin, S .
PHYSICAL REVIEW E, 2002, 66 (03) :1-036113
[9]   Asymmetric evolving random networks [J].
Coulomb, S ;
Bauer, M .
EUROPEAN PHYSICAL JOURNAL B, 2003, 35 (03) :377-389
[10]   Ising model on networks with an arbitrary distribution of connections [J].
Dorogovtsev, SN ;
Goltsev, AV ;
Mendes, JFF .
PHYSICAL REVIEW E, 2002, 66 (01) :1-016104