Senescent mouse cells fail to overtly regulate the HIRA histone chaperone and do not form robust Senescence Associated Heterochromatin Foci

被引:49
作者
Kennedy, Alyssa L. [2 ,3 ]
McBryan, Tony [1 ]
Enders, Greg H. [3 ]
Johnson, F. Brad [4 ]
Zhang, Rugang [3 ]
Adams, Peter D. [1 ]
机构
[1] Univ Glasgow, CR UK Beatson Labs, Glasgow, Lanark, Scotland
[2] Drexel Univ, Coll Med, Grad Program Mol & Cellular Biol & Genet, Philadelphia, PA 19104 USA
[3] Fox Chase Canc Ctr, Philadelphia, PA 19111 USA
[4] Univ Penn, Philadelphia, PA 19104 USA
来源
CELL DIVISION | 2010年 / 5卷
关键词
REPLICATIVE LIFE-SPAN; MOLECULAR-MECHANISMS; CELLULAR SENESCENCE; TUMOR SUPPRESSION; G(1) CONTROL; IMMORTALIZATION; FIBROBLASTS; GENES; PROGRESSION; TELOMERASE;
D O I
10.1186/1747-1028-5-16
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Background: Cellular senescence is a permanent growth arrest that occurs in response to cellular stressors, such as telomere shortening or activation of oncogenes. Although the process of senescence growth arrest is somewhat conserved between mouse and human cells, there are some critical differences in the molecular pathways of senescence between these two species. Recent studies in human fibroblasts have defined a cell signaling pathway that is initiated by repression of a specific Wnt ligand, Wnt2. This, in turn, activates a histone chaperone HIRA, and culminates in formation of specialized punctate domains of facultative heterochromatin, called Senescence-Associated Heterochromatin Foci (SAHF), that are enriched in the histone variant, macroH2A. SAHF are thought to repress expression of proliferation-promoting genes, thereby contributing to senescence-associated proliferation arrest. We asked whether this Wnt2-HIRA-SAHF pathway is conserved in mouse fibroblasts. Results: We show that mouse embryo fibroblasts (MEFs) and mouse skin fibroblasts, do not form robust punctate SAHF in response to an activated Ras oncogene or shortened telomeres. However, senescent MEFs do exhibit elevated levels of macroH2A staining throughout the nucleus as a whole. Consistent with their failure to fully activate the SAHF assembly pathway, the Wnt2-HIRA signaling axis is not overtly regulated between proliferating and senescent mouse cells. Conclusions: In addition to the previously defined differences between mouse and human cells in the mechanisms and phenotypes associated with senescence, we conclude that senescent mouse and human fibroblasts also differ at the level of chromatin and the signaling pathways used to regulate chromatin. These differences between human and mouse senescence may contribute to the increased propensity of mouse fibroblasts (and perhaps other mouse cell types) to become immortalized and transformed, compared to human cells.
引用
收藏
页数:11
相关论文
共 32 条
[1]   Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging [J].
Adams, Peter D. .
GENE, 2007, 397 (1-2) :84-93
[2]   Healing and Hurting: Molecular Mechanisms, Functions, and Pathologies of Cellular Senescence [J].
Adams, Peter D. .
MOLECULAR CELL, 2009, 36 (01) :2-14
[3]   Telomere shortening and tumor formation by mouse cells lacking telomerase RNA [J].
Blasco, MA ;
Lee, HW ;
Hande, MP ;
Samper, E ;
Lansdorp, PM ;
DePinho, RA ;
Greider, CW .
CELL, 1997, 91 (01) :25-34
[4]  
Bond JA, 1999, MOL CELL BIOL, V19, P3103
[5]   Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors [J].
Campisi, J .
CELL, 2005, 120 (04) :513-522
[6]   Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals [J].
Costanzi, C ;
Pehrson, JR .
NATURE, 1998, 393 (6685) :599-601
[7]   INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN-MEDIATED BY PROTEIN-KINASE-B [J].
CROSS, DAE ;
ALESSI, DR ;
COHEN, P ;
ANDJELKOVICH, M ;
HEMMINGS, BA .
NATURE, 1995, 378 (6559) :785-789
[8]   Ablation of the Retinoblastoma gene family deregulates G1 control causing immortalization and increased cell turnover under growth-restricting conditions [J].
Dannenberg, JH ;
van Rossum, A ;
Schuijff, L ;
Riele, HT .
GENES & DEVELOPMENT, 2000, 14 (23) :3051-3064
[9]   The E2F transcriptional network: old acquaintances with new faces [J].
Dimova, DK ;
Dyson, NJ .
ONCOGENE, 2005, 24 (17) :2810-2826
[10]   A BIOMARKER THAT IDENTIFIES SENESCENT HUMAN-CELLS IN CULTURE AND IN AGING SKIN IN-VIVO [J].
DIMRI, GP ;
LEE, XH ;
BASILE, G ;
ACOSTA, M ;
SCOTT, C ;
ROSKELLEY, C ;
MEDRANO, EE ;
LINSKENS, M ;
RUBELJ, I ;
PEREIRASMITH, O ;
PEACOCKE, M ;
CAMPISI, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (20) :9363-9367