Temperature dependence of optical gain and loss in λ≈8.2-10.2 μm quantum-cascade lasers

被引:16
作者
Liu, Zhijun [1 ,2 ]
Gmachl, Claire F. [1 ,2 ]
Cheng, Liwei [3 ]
Choa, Fow-Sen [3 ]
Towner, Fred J. [4 ]
Wang, Xiaojun [5 ]
Fan, Jenyu [5 ]
机构
[1] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Princeton Inst Sci & Technol Mat, Princeton, NJ 08544 USA
[3] Univ Maryland, Dept Comp Sci & Elect Engn, Baltimore, MD 21250 USA
[4] Maxion Technol Inc, Hyattsville, MD 20782 USA
[5] AdTech Opt, City Of Industry, CA 91748 USA
关键词
midinfrared; optical gain; quantum-cascade (QC) laser; waveguide loss;
D O I
10.1109/JQE.2008.917273
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Temperature-dependent optical gain and waveguide loss have been measured for continuous-wave operated quantum-cascade lasers with wavelengths between 8.2 and 10.2 mu m up to room temperature using the Hakki-Paoli method. The gain coefficient decreases with increasing temperature, and is close to the designed value for vertical transition lasers, but smaller than the designed value for diagonal transition lasers. The waveguide loss, however, is two to three times higher than calculated from free carrier absorption, and can be nearly constant, increase or decrease with temperature depending on sample design, which indicates that it is dominated by another mechanism other than plain free carrier absorption. One likely factor resulting in high waveguide loss is intersubband resonant absorption into higher lying states.
引用
收藏
页码:485 / 492
页数:8
相关论文
共 19 条
[1]   Continuous wave operation of a mid-infrared semiconductor laser at room temperature [J].
Beck, M ;
Hofstetter, D ;
Aellen, T ;
Faist, J ;
Oesterle, U ;
Ilegems, M ;
Gini, E ;
Melchior, H .
SCIENCE, 2002, 295 (5553) :301-305
[2]  
DIEHL L, 2006, APPL PHYS LETT, V88
[3]   Ammonia detection by using quantum-cascade laser photoacoustic spectroscopy [J].
Filho, Milton B. ;
da Silva, Marcelo G. ;
Sthel, Marcelo S. ;
Schramm, Delson U. ;
Vargas, Helion ;
Miklos, Andras ;
Hess, Peter .
APPLIED OPTICS, 2006, 45 (20) :4966-4971
[4]   Recent progress in quantum cascade lasers and applications [J].
Gmachl, C ;
Capasso, F ;
Sivco, DL ;
Cho, AY .
REPORTS ON PROGRESS IN PHYSICS, 2001, 64 (11) :1533-1601
[5]   Quantum cascade lasers with low-loss chalcogenide lateral waveguides [J].
Gmachl, C ;
Hwang, HY ;
Paiella, R ;
Sivco, DL ;
Baillargeon, JN ;
Capasso, F ;
Cho, AY .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13 (03) :182-184
[6]   Quantum cascade lasers with large optical waveguides [J].
Gresch, T ;
Giovannini, M ;
Hoyer, N ;
Faist, J .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2006, 18 (1-4) :544-546
[7]   GAIN SPECTRA IN GAAS DOUBLE-HETEROSTRUCTURE INJECTION LASERS [J].
HAKKI, BW ;
PAOLI, TL .
JOURNAL OF APPLIED PHYSICS, 1975, 46 (03) :1299-1306
[8]   Continuous wave operation of a 9.3 μm quantum cascade laser on a Peltier cooler [J].
Hofstetter, D ;
Beck, M ;
Aellen, T ;
Faist, J ;
Oesterle, U ;
Ilegems, M ;
Gini, E ;
Melchior, H .
APPLIED PHYSICS LETTERS, 2001, 78 (14) :1964-1966
[9]   Ozone detection by differential absorption spectroscopy at ambient pressure with a 9.6 μm pulsed quantum-cascade laser [J].
Jiménez, R ;
Taslakov, M ;
Simeonov, V ;
Calpini, B ;
Jeanneret, F ;
Hofstetter, D ;
Beck, M ;
Faist, J ;
Van den Bergh, H .
APPLIED PHYSICS B-LASERS AND OPTICS, 2004, 78 (02) :249-256
[10]   Chemical sensors based on quantum cascade lasers [J].
Kosterev, AA ;
Tittel, FK .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :582-591