Nitrogen incorporation in group III-nitride-arsenide materials grown by elemental source molecular beam epitaxy

被引:107
作者
Spruytte, SG
Larson, MC
Wampler, W
Coldren, CW
Petersen, HE
Harris, JS
机构
[1] Stanford Univ, Solid State & Photon Lab, Dept Elect Engn, CISX, Stanford, CA 94305 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[3] Agil Commun, Santa Barbara, CA USA
[4] Sandia Natl Labs, Radiat Solid Interact & Proc Dept 1111, Albuquerque, NM 87185 USA
关键词
characterization; defects; diffusion; molecular beam epitaxy; semiconducting IIIV materials; laser diodes;
D O I
10.1016/S0022-0248(01)00757-6
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Group III-nitride-arsenides are promising materials for long wavelength opto-electronic: devices grown on GaAs substrates. The growth of nitride-arsenides was performed in an elemental solid source molecular beam epitaxy system with a plasma cell to supply reactive nitrogen. Growth is carried out with plasma conditions that maximize the amount of atomic nitrogen versus molecular nitrogen, as determined from the emission spectrum of the plasma. The group III growth rate controls the nitrogen concentration in the film. The photoluminescence intensity of GaNAs and GaInNAs quantum wells (QWs) increases drastically and shifts to shorter wavelengths following high temperature anneal. Nitrogen diffusion out of the QWs is responsible for the wavelength shift, We observe a decrease of interstitial nitrogen after anneal. Vertical-cavity surface-emitting lasers with GaInNAs QWs demonstrated a continous-wave operation, To limit nitrogen diffusion, the GaAs barriers surrounding the GaInNAs: QWs were replaced by GaNAs barriers, This new active region resulted in devices emitting at 1.3 mum, (C) 2001 Elsevier Science B,V, All rights reserved.
引用
收藏
页码:506 / 515
页数:10
相关论文
共 23 条
[11]   1.3-μm continuous-wave lasing operation in GaInNAs quantum-well lasers [J].
Nakahara, K ;
Kondow, M ;
Kitatani, T ;
Larson, MC ;
Uomi, K .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1998, 10 (04) :487-488
[12]   ELECTRONIC-STRUCTURE AND PHASE-STABILITY OF GAAS1-XNX ALLOYS [J].
NEUGEBAUER, J ;
VAN DE WALLE, CG .
PHYSICAL REVIEW B, 1995, 51 (16) :10568-10571
[13]   LOW-RESISTIVITY P-TYPE ZNSE-N GROWN BY MOLECULAR-BEAM EPITAXY USING A NITROGEN FREE-RADICAL SOURCE [J].
PARK, RM .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 1992, 10 (04) :701-704
[14]  
Qui Y., 1997, APPL PHYS LETT, V70, P2831
[15]   Optical properties of low band gap GaAs(1-x)Nx layers:: Influence of post-growth treatments [J].
Rao, EVK ;
Ougazzaden, A ;
Le Bellego, Y ;
Juhel, M .
APPLIED PHYSICS LETTERS, 1998, 72 (12) :1409-1411
[16]   MOVPE growth of strained InGaAsN/GaAs quantum wells [J].
Saito, H ;
Makimoto, T ;
Kobayashi, N .
JOURNAL OF CRYSTAL GROWTH, 1998, 195 (1-4) :416-420
[17]  
SPRUYTTE S, 2001, IN PRESS J APPL PHYS, V89
[18]  
SPRUYTTE SG, 1999, MAT RES SOC S P, V595
[19]  
SPRUYTTE SG, 2000, 197 M EL SOC, P195
[20]   CROSS-SECTION MEASUREMENTS OF THE N-14(HE-3,P)O-16 AND N-14(HE-3,ALPHA)N-13 REACTIONS BETWEEN 1.6 AND 2.8 MEV [J].
TERWAGNE, G ;
COHEN, DD ;
COLLINS, GA .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1994, 84 (04) :415-420