Lignocellulosic nanostructures as reinforcement in extruded and solvent casted polymeric nanocomposites: an overview

被引:77
作者
Fortunati, E. [1 ]
Yang, W. [1 ]
Luzi, F. [1 ]
Kenny, J. [1 ]
Torre, L. [1 ]
Puglia, D. [1 ]
机构
[1] Univ Perugia, Civil & Environm Engn Dept, Mat Engn Ctr, UdR INSTM, Terni, Italy
关键词
Cellulose nanocrystals; Lignin nanoparticles; Nanocomposites; Solvent casting; Melt mixing; Ternary systems; MICROFIBRILLATED CELLULOSE MFC; PVA BIO-NANOCOMPOSITES; LIGNIN NANOPARTICLES; NANOFIBRILLATED CELLULOSE; BACTERIAL CELLULOSE; NANOCRYSTALLINE CELLULOSE; ELECTROSPUN NANOFIBERS; CHEMICAL-MODIFICATION; MECHANICAL-PROPERTIES; MICROBIAL CELLULOSE;
D O I
10.1016/j.eurpolymj.2016.04.013
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Lignocellulosic nanostructures, mainly cellulose and lignin based materials, have recently attracted much attention due to their renewable nature, wide variety of source materials available throughout the world, low cost and density, high surface functionality and reactivity. The exceptional mechanical strength, together with high aspect ratio and large surface area, enable these. nanomaterials to reinforce a wide variety of polymers even at very low filler loadings. Furthermore, nanocomposite approach has emerged in the last two decades as an efficient strategy to upgrade the structural and functional properties of natural and/or synthetic polymers. The combination of bioresorbable and sustainable polymers with bio-based nanostructures opened new perspectives in the self-assembly of nanomaterials for different applications with tuneable mechanical, thermal and degradative properties. In the present paper, the effect of introduction of lignocellulosic reinforcement phases (cellulosic and lignin based nanostructures), on structural and functional properties of several thermoplastic polymer matrices was investigated at the nanoscale level. Both solvent casting and melt compounding were considered as processing techniques for the proposed nanocomposite formulations. The role of cellulose and lignin based nanostructures, such as their synergic action when embedded in a polymer matrix, were analysed (taking into account the required functionality of the systems in the appropriate final applications) and reported in terms of morphological, optical, thermal, chemical, mechanical, barrier and degradative performance. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:295 / 316
页数:22
相关论文
共 145 条
[1]   Thermomechanical Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals: A Dynamic Mechanical and Nanoindentation Study [J].
Ago, Mariko ;
Jakes, Joseph E. ;
Rojas, Orlando J. .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (22) :11768-11776
[2]   Interfacial Properties of Lignin-Based Electrospun Nanofibers and Films Reinforced with Cellulose Nanocrystals [J].
Ago, Mariko ;
Jakes, Joseph E. ;
Johansson, Leena-Sisko ;
Park, Sunkyu ;
Rojas, Orlando J. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (12) :6848-6855
[3]   Non-woody plants as raw materials for production of microfibrillated cellulose (MFC): A comparative study [J].
Alila, Sabrine ;
Besbes, Iskander ;
Vilar, Manuel Rei ;
Mutje, Pere ;
Boufi, Sami .
INDUSTRIAL CROPS AND PRODUCTS, 2013, 41 :250-259
[4]   Properties and characterization of hydrophobized microfibrillated cellulose [J].
Andresen, Martin ;
Johansson, Leena-Sisko ;
Tanem, Bjorn Steinar ;
Stenius, Per .
CELLULOSE, 2006, 13 (06) :665-677
[5]  
Antczak T., 2012, FIBRES TEX E EUR, V20, P91
[6]   Biodegradable polymer matrix nanocomposites for tissue engineering: A review [J].
Armentano, I. ;
Dottori, M. ;
Fortunati, E. ;
Mattioli, S. ;
Kenny, J. M. .
POLYMER DEGRADATION AND STABILITY, 2010, 95 (11) :2126-2146
[7]   Multifunctional PLA-PHB/cellulose nanocrystal films: Processing, structural and thermal properties [J].
Arrieta, M. P. ;
Fortunati, E. ;
Dominici, F. ;
Rayon, E. ;
Lopez, J. ;
Kenny, J. M. .
CARBOHYDRATE POLYMERS, 2014, 107 :16-24
[8]   Hybrid fillers of lignin and carbon black for lowering of viscoelastic loss in rubber compounds [J].
Bahl, Kushal ;
Miyoshi, Toshikazu ;
Jana, Sadhan C. .
POLYMER, 2014, 55 (16) :3825-3835
[9]   Direct Transformation of Edible Vegetable Waste into Bioplastics [J].
Bayer, Ilker S. ;
Guzman-Puyol, Susana ;
Heredia-Guerrero, Jose Alejandro ;
Ceseracciu, Luca ;
Pignatelli, Francesca ;
Ruffilli, Roberta ;
Cingolani, Roberto ;
Athanassiou, Athanassia .
MACROMOLECULES, 2014, 47 (15) :5135-5143
[10]   Bio-based polyurethane reinforced with cellulose nanofibers: A comprehensive investigation on the effect of interface [J].
Benhamou, Karima ;
Kaddami, Hamid ;
Magnin, Albert ;
Dufresne, Alain ;
Ahmad, Azizan .
CARBOHYDRATE POLYMERS, 2015, 122 :202-211