Robust stability and a criss-cross algorithm for pseudospectra

被引:53
作者
Burke, JV [1 ]
Lewis, AS
Overton, ML
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Simon Fraser Univ, Dept Math, Burnaby, BC V5A 1S6, Canada
[3] NYU, Courant Inst Math Sci, New York, NY 10012 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
pseudospectrum; eigenvalue optimization; robust control; stability; spectral abscissa; H-infinity norm; robust optimization; Hamiltonian matrix;
D O I
10.1093/imanum/23.3.359
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A dynamical system (x) over dot = Ax is robustly stable when all eigenvalues of complex matrices within a given distance of the square matrix A lie in the left half-plane. The 'pseudospectral abscissa', which is the largest real part of such an eigenvalue, measures the robust stability of A. We present an algorithm for computing the pseudospectral abscissa, prove global and local quadratic convergence, and discuss numerical implementation. As with analogous methods for calculating H-infinity norms, our algorithm depends on computing the eigenvalues of associated Hamiltonian matrices.
引用
收藏
页码:359 / 375
页数:17
相关论文
共 19 条
[1]  
[Anonymous], 2002, EIGTOOL GRAPHICAL TO
[2]   Algorithm 800: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices I: The square-reduced method [J].
Benner, P ;
Byers, R ;
Barth, E .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2000, 26 (01) :49-77
[3]  
BENNER P., 1999, ELECTRON T NUMER ANA, V8, P115
[4]  
Boyd S., 1989, Mathematics of Control, Signals, and Systems, V2, P207, DOI 10.1007/BF02551385
[5]   A REGULARITY RESULT FOR THE SINGULAR-VALUES OF A TRANSFER-MATRIX AND A QUADRATICALLY CONVERGENT ALGORITHM FOR COMPUTING ITS L-INFINITY-NORM [J].
BOYD, S ;
BALAKRISHNAN, V .
SYSTEMS & CONTROL LETTERS, 1990, 15 (01) :1-7
[6]   A FAST ALGORITHM TO COMPUTE THE H-INFINITY-NORM OF A TRANSFER-FUNCTION MATRIX [J].
BRUINSMA, NA ;
STEINBUCH, M .
SYSTEMS & CONTROL LETTERS, 1990, 14 (04) :287-293
[7]  
BURKE JV, 2003, IN PRESS SIAM J MATR
[8]   A BISECTION METHOD FOR MEASURING THE DISTANCE OF A STABLE MATRIX TO THE UNSTABLE MATRICES [J].
BYERS, R .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (05) :875-881
[9]   A COUNTEREXAMPLE FOR 2 CONJECTURES ABOUT STABILITY [J].
DEMMEL, JW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1987, 32 (04) :340-342
[10]  
DIENES P, 1957, TAYLOR SERIES