Algorithm 800: Fortran 77 subroutines for computing the eigenvalues of Hamiltonian matrices I: The square-reduced method

被引:15
作者
Benner, P [1 ]
Byers, R
Barth, E
机构
[1] Univ Bremen, Zentrum Technomath, Fachbereich Math & Informat 3, D-28834 Bremen, Germany
[2] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
[3] Kalamazoo Coll, Dept Math, Kalamazoo, MI 49006 USA
来源
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE | 2000年 / 26卷 / 01期
关键词
algorithms; documentation; performance; Algebraic Riccati equation; eigenvalues; Hamiltonian matrix; skew-Hamiltonian matrix; (square-reduced) Hamiltonian matrix;
D O I
10.1145/347837.347852
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This article describes LAPACK-based Fortran 77 subroutines for the reduction of a Hamiltonian matrix to square-reduced form and the approximation of all its eigenvalues using the implicit version of Van Loan's method. The transformation of the Hamiltonian matrix to a square-reduced form transforms a Hamiltonian eigenvalue problem of order 2n to a Hessenberg eigenvalue problem of order Iz,The eigenvalues of the Hamiltonian matrix are the square roots of those of the Hessenberg matrix. Symplectic scaling and norm scaling are provided, which, in some cases, improve the accuracy of the computed eigenvalues. We demonstrate the performance of the subroutines for several examples and show how they can be used to solve some control-theoretic problems.
引用
收藏
页码:49 / 77
页数:29
相关论文
共 41 条
[1]   ON HAMILTONIAN AND SYMPLECTIC HESSENBERG FORMS [J].
AMMAR, G ;
MEHRMANN, V .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 149 :55-72
[2]  
Ammar G., 1993, ELECTRON T NUMER ANA, V1, P33
[3]  
Anderson E., 1995, LAPACK USERS GUIDE
[4]   A numerically stable, structure preserving method for computing the eigenvalues of real Hamiltonian or symplectic pencils [J].
Benner, P ;
Mehrmann, V ;
Xu, HG .
NUMERISCHE MATHEMATIK, 1998, 78 (03) :329-358
[5]  
BENNER P, 2000, UNPUB FORTRAN 77 SUB
[6]  
Benner P., 1995, 9522 SPC TU CHEMN ZW
[7]  
Boyd S., 1989, Mathematics of Control, Signals, and Systems, V2, P207, DOI 10.1007/BF02551385
[8]   A REGULARITY RESULT FOR THE SINGULAR-VALUES OF A TRANSFER-MATRIX AND A QUADRATICALLY CONVERGENT ALGORITHM FOR COMPUTING ITS L-INFINITY-NORM [J].
BOYD, S ;
BALAKRISHNAN, V .
SYSTEMS & CONTROL LETTERS, 1990, 15 (01) :1-7
[9]   A FAST ALGORITHM TO COMPUTE THE H-INFINITY-NORM OF A TRANSFER-FUNCTION MATRIX [J].
BRUINSMA, NA ;
STEINBUCH, M .
SYSTEMS & CONTROL LETTERS, 1990, 14 (04) :287-293