Sub-100 nm Channel Length Graphene Transistors

被引:151
作者
Liao, Lei [1 ]
Bai, Jingwei [2 ]
Cheng, Rui [2 ]
Lin, Yung-Chen [2 ]
Jiang, Shan [1 ]
Qu, Yongquan [1 ]
Huang, Yu [2 ,3 ]
Duan, Xiangfeng [1 ,3 ]
机构
[1] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
关键词
Graphene transistors; self-aligned gate. nanowires; transit time; cutoff frequency; ELECTRICAL-TRANSPORT; FIELD; PERFORMANCE; MOBILITY; HETEROSTRUCTURES;
D O I
10.1021/nl101724k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Here we report high-performance sub-100 nm channel length graphene transistors fabricated using a self-aligned approach The graphene transistors are fabricated using a highly doped GaN1 nanowire as the local gate with the source and drain electrodes defined through a self-aligned process and the channel length defined by the nanowire size This fabrication approach allows the preservation of the high carrier mobility in graphene and ensures nearly perfect alignment between source, drain, and gate electrodes It therefore affords transistor performance not previously possible Graphene transistors with 45 100 nm channel lengths have been fabricated with the scaled transconductance exceeding 2 mS/prn. comparable to the best performed high electron mobility transistors with similar channel lengths Analysis of and the device characteristics gives a transit time of 120-220 fs and the projected intrinsic cutoff frequency (fT) reaching 700-1400 GHz This study demonstrates the exciting potential of graphene based electronics in terahertz electronics
引用
收藏
页码:3952 / 3956
页数:5
相关论文
共 35 条
[1]   Electronic confinement and coherence in patterned epitaxial graphene [J].
Berger, Claire ;
Song, Zhimin ;
Li, Xuebin ;
Wu, Xiaosong ;
Brown, Nate ;
Naud, Cecile ;
Mayou, Didier ;
Li, Tianbo ;
Hass, Joanna ;
Marchenkov, Atexei N. ;
Conrad, Edward H. ;
First, Phillip N. ;
de Heer, Wait A. .
SCIENCE, 2006, 312 (5777) :1191-1196
[2]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[3]   Coulomb oscillations and Hall effect in quasi-2D graphite quantum dots [J].
Bunch, JS ;
Yaish, Y ;
Brink, M ;
Bolotin, K ;
McEuen, PL .
NANO LETTERS, 2005, 5 (02) :287-290
[4]   AC performance of nanoelectronics: towards a ballistic THz nanotube transistor [J].
Burke, PJ .
SOLID-STATE ELECTRONICS, 2004, 48 (10-11) :1981-1986
[5]  
Chen Z, 2008, INT EL DEVICES MEET, P509
[6]   Electrical transport properties and field effect transistors of carbon nanotubes [J].
Dai, Hongjie ;
Javey, Ali ;
Pop, Eric ;
Mann, David ;
Kim, Woong ;
Lu, Yuerui .
NANO, 2006, 1 (01) :1-13
[7]   Utilization of a Buffered Dielectric to Achieve High Field-Effect Carrier Mobility in Graphene Transistors [J].
Farmer, Damon B. ;
Chiu, Hsin-Ying ;
Lin, Yu-Ming ;
Jenkins, Keith A. ;
Xia, Fengnian ;
Avouris, Phaedon .
NANO LETTERS, 2009, 9 (12) :4474-4478
[8]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[9]   GaN nanowire lasers with low lasing thresholds [J].
Gradecak, S ;
Qian, F ;
Li, Y ;
Park, HG ;
Lieber, CM .
APPLIED PHYSICS LETTERS, 2005, 87 (17) :1-3
[10]   Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric [J].
Kim, Seyoung ;
Nah, Junghyo ;
Jo, Insun ;
Shahrjerdi, Davood ;
Colombo, Luigi ;
Yao, Zhen ;
Tutuc, Emanuel ;
Banerjee, Sanjay K. .
APPLIED PHYSICS LETTERS, 2009, 94 (06)