In a nanomagnet, very small polarized currents can lead to magnetic reversal. Treating on the same footing the transport and magnetic properties of a nanomagnet connected to magnetic leads via tunneling barriers, we derive a closed equation for the time evolution of the magnetization. The interplay between Coulomb blockade phenomena and magnetism gives some additional structure to the current-induced spin torque. In addition to the possibility of stabilizing uniform spin precession states, we find that the system is highly hysteretic: up to three different magnetic states can be simultaneously stable in one region of the parameter space (magnetic field and bias voltage).