Relation between the inverse Laplace transforms of I(tβ) and I(t):: Application to the Mittag-Leffler and asymptotic inverse power law relaxation functions

被引:15
作者
Berberan-Santos, MN [1 ]
机构
[1] Univ Tecn Lisboa, Ctr Quim Fis Mol, Inst Super Tecn, P-1049001 Lisbon, Portugal
关键词
Levy distribution; Mittag-Leffler function; Laplace transform; relaxation kinetics;
D O I
10.1007/s10910-005-5412-x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The relation between H(k), inverse Laplace transform of a relaxation function I(t), and H-beta(k), inverse Laplace transform of I(t(beta)), is obtained. It is shown that for beta < 1 the function H-beta(k) can be expressed in terms of H(k) and of the Levy one-sided distribution L-beta(k). The obtained results are applied to the Mittag-Leffler and asymptotic inverse power law relaxation functions. A simple integral representation for the Levy one-sided density function L-1/4(k) is also obtained.
引用
收藏
页码:265 / 270
页数:6
相关论文
共 18 条
[11]  
MITTAGLEFFLER GM, 1903, CR ACAD SCI II-MEC P, V136, P70
[12]   PHOTODISSOCIATION OF CARBON MONOXY MYOGLOBIN - KINETICS OF CARBON-MONOXIDE REBINDING [J].
PLONKA, A ;
KROH, J ;
BERLIN, YA .
CHEMICAL PHYSICS LETTERS, 1988, 153 (05) :433-435
[14]   On fractional kinetic equations [J].
Saxena, RK ;
Mathai, AM ;
Haubold, HJ .
ASTROPHYSICS AND SPACE SCIENCE, 2002, 282 (01) :281-287
[15]   Regenerative processes in supercooled liquids and glasses [J].
Sjögren, L .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 322 (1-4) :81-117
[16]  
Uchaikin VV, 1999, CHANCE STABILITY STA, DOI [DOI 10.1515/9783110935974, 10.1515/9783110935974]
[17]   On the Cole-Cole relaxation function and related Mittag-Leffler distribution [J].
Weron, K ;
Kotulski, M .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1996, 232 (1-2) :180-188
[18]   Probabilistic basis for the Cole-Cole relaxation law [J].
Weron, K ;
Klauzer, A .
FERROELECTRICS, 2000, 236 (1-4) :59-69