Carbon, dopant, and vacancy interactions in germanium

被引:75
作者
Chroneos, A.
Uberuaga, B. P.
Grimes, R. W. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2BP, England
[2] NCSR Demokritos, Inst Microelect, Aghia Paraskevi 15310, Greece
[3] Los Alamos Natl Lab, Div Mat Sci & Technol, Los Alamos, NM 87545 USA
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1063/1.2798875
中图分类号
O59 [应用物理学];
学科分类号
摘要
Electronic structure calculations have been used to study the interaction of carbon with isolated substitutional dopants (boron, phosphorus, or arsenic), vacancies, and dopant-vacancy pairs in germanium. For comparison, equivalent defects were examined in silicon. The calculations employed a plane-wave basis set and pseudopotentials within the generalized gradient approximation of density functional theory. The results predict a range of different association preferences, with carbon being strongly bound in some cases and unbound in others. For example, in germanium, the carbon-vacancy cluster is weakly bound whereas in silicon it is more strongly bound. Conversely, dopant-carbon pairs are not stable in either germanium or silicon compared to their isolated components. If, however, they are formed during implantation, they will act as strong vacancy traps. Details of clusters comprised of a dopant, carbon, and vacancy are also discussed with respect to their formation by the association of a vacancy or cluster pair. (C) 2007 American Institute of Physics.
引用
收藏
页数:6
相关论文
共 35 条
[1]   LATTICE CONSTANTS + THERMAL EXPANSIVITIES OF SILICON + OF CALCIUM FLUORIDE BETWEEN 6 DEGREES + 322 DEGREES K [J].
BATCHELDER, DN ;
SIMMONS, RO .
JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (08) :2324-&
[2]   Comparison of screened hybrid density functional theory to diffusion Monte Carlo in calculations of total energies of silicon phases and defects [J].
Batista, Enrique R. ;
Heyd, Jochen ;
Hennig, Richard G. ;
Uberuaga, Blas P. ;
Martin, Richard L. ;
Scuseria, Gustavo E. ;
Umrigar, C. J. ;
Wilkins, John W. .
PHYSICAL REVIEW B, 2006, 74 (12)
[3]  
BRACHT H, 2006, UNPUB 2 INT WORKSH C
[4]   Atomic transport in germanium and the mechanism of arsenic diffusion [J].
Bracht, Hartmut ;
Brotzmann, Sergej .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2006, 9 (4-5) :471-476
[5]   Atomic scale simulations of arsenic-vacancy complexes in germanium and silicon [J].
Chroneos, A. ;
Grimes, R. W. ;
Tsamis, C. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2006, 9 (4-5) :536-540
[6]   Implantation and diffusion of phosphorous in germanium [J].
Chroneos, A. ;
Skarlatos, D. ;
Tsamis, C. ;
Christofi, A. ;
McPhail, D. S. ;
Hung, R. .
MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2006, 9 (4-5) :640-643
[7]   Atomic scale simulations of donor-vacancy pairs in germanium [J].
Chroneos, A. ;
Grimes, R. W. ;
Tsamis, C. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2007, 18 (07) :763-768
[8]  
Chui CO, 2002, IEEE ELECTR DEVICE L, V23, P473, DOI [10.1109/LED.2002.801319, 10.1009/LED.2002.801319]
[9]   Activation and diffusion studies of ion-implanted p and n dopants in germanium [J].
Chui, CO ;
Gopalakrishnan, K ;
Griffin, PB ;
Plummer, JD ;
Saraswat, KC .
APPLIED PHYSICS LETTERS, 2003, 83 (16) :3275-3277
[10]   Early stage donor-vacancy clusters in germanium [J].
Coutinho, Jose ;
Torres, Vitor J. B. ;
Oberg, Sven ;
Carvalho, Alexandra ;
Janke, Colin ;
Jones, Robert ;
Briddon, Patrick R. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2007, 18 (07) :769-773