AFM detection of the mechanical resonances of coiled carbon nanotubes

被引:20
作者
Volodin, A. [1 ]
Van Haesendonck, C. [1 ]
Tarkiainen, R. [2 ]
Ahlskog, M. [2 ]
Fonseca, A. [3 ]
Nagy, J. B. [3 ]
机构
[1] Katholieke Univ Leuven, Lab Vaste Stoffys & Magnetisme, B-3001 Heverlee, Belgium
[2] Aalto Univ, Low Temp Lab, Espoo 02015, Finland
[3] Fac Univ Notre Dame Paix, Lab Resonance Magenet Nucl, B-5000 Namur, Belgium
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2001年 / 72卷 / Suppl 1期
关键词
PACS: 61.16.Ch; 61.48.+c;
D O I
10.1007/s003390100644
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a method for atomic force microscopy (AFM)-based detection of mechanical resonances in helix-shaped multi-walled carbon nanotubes. After deposition on an oxidized silicon substrate, the three-dimensional structure of suspended nanotubes, which bridges an artificially created step on the surface, can be visualized using AFM operating in the non-contact mode. The suspended coiled nanotubes are resonantly excited, in situ, at the fundamental frequency by an ultrasonic transducer connected to the substrate. When the AFM tip is positioned above the coiled nanotube, the cantilever is unable to follow the fast nanotube oscillations. Nevertheless, an oscillation amplitude-dependent signal is generated due to the non-linear force-to-distance dependence. Measurement of the mechanical resonances of the helix-shaped carbon nanotubes can be used to quantitatively determine their elastic properties. Assuming that a coiled nanotube can be modeled as a suspended helix-shaped uniformly thin elastic beam, the obtained resonance frequency is consistent with a Young's modulus of 0.17 +/- 0.05 TPa.
引用
收藏
页码:S75 / S78
页数:4
相关论文
共 12 条
[1]   Scanning local-acceleration microscopy [J].
Burnham, NA ;
Kulik, AJ ;
Gremaud, G ;
Gallo, PJ ;
Oulevey, F .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (02) :794-799
[2]   Measurement of the elastic modulus of a multi-wall boron nitride nanotube [J].
Chopra, NG ;
Zettl, A .
SOLID STATE COMMUNICATIONS, 1998, 105 (05) :297-300
[3]  
Den Hartog J.P., 1934, Mechanical Vibrations
[4]   Catalytic synthesis of carbon nanotubes using zeolite support [J].
Hernadi, K ;
Fonseca, A ;
Nagy, JB ;
Bernaerts, D ;
Fudala, A ;
Lucas, AA .
ZEOLITES, 1996, 17 (5-6) :416-423
[5]   Force microscopy for the investigation of high-frequency surface acoustic wave devices [J].
Hesjedal, T ;
Frohlich, HJ ;
Chilla, E .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 1998, 66 (Suppl 1) :S325-S328
[6]   HELICAL MICROTUBULES OF GRAPHITIC CARBON [J].
IIJIMA, S .
NATURE, 1991, 354 (6348) :56-58
[7]   Imaging the elastic nanostructure of Ge islands by ultrasonic force microscopy [J].
Kolosov, OV ;
Castell, MR ;
Marsh, CD ;
Briggs, GAD ;
Kamins, TI ;
Williams, RS .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1046-1049
[8]   Electrostatic deflections and electromechanical resonances of carbon nanotubes [J].
Poncharal, P ;
Wang, ZL ;
Ugarte, D ;
de Heer, WA .
SCIENCE, 1999, 283 (5407) :1513-1516
[9]   Quantitative determination of contact stiffness using atomic force acoustic microscopy [J].
Rabe, U ;
Amelio, S ;
Kester, E ;
Scherer, V ;
Hirsekorn, S ;
Arnold, W .
ULTRASONICS, 2000, 38 (1-8) :430-437
[10]   Elastic and shear moduli of single-walled carbon nanotube ropes [J].
Salvetat, JP ;
Briggs, GAD ;
Bonard, JM ;
Bacsa, RR ;
Kulik, AJ ;
Stöckli, T ;
Burnham, NA ;
Forró, L .
PHYSICAL REVIEW LETTERS, 1999, 82 (05) :944-947