Pt/VO2 double-layered films combining thermochromic properties with low emissivity

被引:95
作者
Kang, Litao [1 ,2 ]
Gao, Yanfeng [1 ]
Chen, Zhang [1 ,3 ]
Du, Jing [1 ,2 ]
Zhang, Zongtao [1 ,2 ]
Luo, Hongjie [1 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, Res Ctr Ind Ceram, Shanghai 200050, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
[3] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Peoples R China
基金
中国国家自然科学基金;
关键词
Vanadium dioxide; Smart window; Thermochromic property; Pt coating; Thin film; Thermal emissivity; METAL-INSULATOR-TRANSITION; SEMICONDUCTOR PHASE-TRANSITION; CHEMICAL-VAPOR-DEPOSITION; OPTICAL-PROPERTIES; THIN-FILMS; MULTILAYER FILMS; VO2; COATINGS; WINDOW; TIO2;
D O I
10.1016/j.solmat.2010.06.023
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study involves the optical properties of Pt/VO2 composite films, with a Pt top layer and a VO2 bottom layer. VO2 and Pt films were grown on fused silica substrates by polymer-assisted deposition and sputtering, respectively. These Pt/VO2 films were characterized by scanning electron microscopy, UV-visible-NIR spectrophotometry, Fourier transform infrared spectrometry, four-point probe and Raman spectroscopy. The results indicate that these Pt/VO2 films can enhance the infrared reflectivity while retaining their thermochromic properties. Although the visible transmittance is depressed by these Pt layers, the addition of antireflection coatings boosts the transmittance from 25.1% to 37.9% at 0.55 mu m. In addition, the semiconductor-metal (S-M) transition temperatures of Pt/VO2 films shift to lower temperatures in the heating semicycle (T-c,T-h), from 67.8 degrees C for a pure VO2 film to 58.5 degrees C for a VO2 film covered with a 9 nm Pt layer. This work provides an important prototype structure for the development of new smart windows that combine thermochromic properties with low emissivity. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:2078 / 2084
页数:7
相关论文
共 40 条
[1]   Effect of grain sizes on the metal-semiconductor phase transition in vanadium dioxide polycrystalline thin films [J].
Aliev, R. A. ;
Andreev, V. N. ;
Kapralova, V. M. ;
Klimov, V. A. ;
Sobolev, A. I. ;
Shadrin, E. B. .
PHYSICS OF THE SOLID STATE, 2006, 48 (05) :929-934
[2]   Doped and un-doped vanadium dioxide thin films prepared by atmospheric pressure chemical vapour deposition from vanadyl acetylacetonate and tungsten hexachloride: the effects of thickness and crystallographic orientation on thermochromic properties [J].
Binions, Russell ;
Hyett, Geoffrey ;
Piccirillo, Clara ;
Parkin, Ivan Paul .
JOURNAL OF MATERIALS CHEMISTRY, 2007, 17 (44) :4652-4660
[3]   Optical switching of Au-doped VO2 sol-gel films [J].
Cavanna, E ;
Segaud, JP ;
Livage, J .
MATERIALS RESEARCH BULLETIN, 1999, 34 (02) :167-177
[4]   The preparation and characterization of transparent nano-sized thermochromic VO2-SiO2 films from the sol-gel process [J].
Chen, HK ;
Hung, HC ;
Yang, TCK ;
Wang, SF .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2004, 347 (1-3) :138-143
[5]   Electrical, optical and structural properties of pure and gold-coated VO2 thin films on quartz substrate [J].
Dejene, F. B. ;
Ocaya, R. O. .
CURRENT APPLIED PHYSICS, 2010, 10 (02) :508-512
[6]   Thermochromic VO2 sputtered by control of a vanadium-oxygen emission ratio [J].
Dillon, RO ;
Le, K ;
Ianno, N .
THIN SOLID FILMS, 2001, 398 :10-16
[7]   Confocal Raman Microscopy across the Metal-Insulator Transition of Single Vanadium Dioxide Nanoparticles [J].
Donev, Eugenii U. ;
Lopez, Rene ;
Feldman, Leonard C. ;
Haglund, Richard F., Jr. .
NANO LETTERS, 2009, 9 (02) :702-706
[8]   PHOTOELECTRIC WORK FUNCTIONS OF TRANSITION, RARE-EARTH, AND NOBLE METALS [J].
EASTMAN, DE .
PHYSICAL REVIEW B, 1970, 2 (01) :1-&
[9]   Inhomogeneous electronic state near the insulator-to-metal transition in the correlated oxide VO2 [J].
Frenzel, A. ;
Qazilbash, M. M. ;
Brehm, M. ;
Chae, Byung-Gyu ;
Kim, Bong-Jun ;
Kim, Hyun-Tak ;
Balatsky, A. V. ;
Keilmann, F. ;
Basov, D. N. .
PHYSICAL REVIEW B, 2009, 80 (11)
[10]   Solar energy materials [J].
Granqvist, CG .
ADVANCED MATERIALS, 2003, 15 (21) :1789-1803