AP2-ERF transcription factors mediate nod factor-dependent mt ENOD11 activation in root hairs via a novel cis-regulatory motif

被引:162
作者
Andriankaja, Andry
Boisson-Demier, Aurelien
Frances, Lisa
Sauviac, Laurent
Jauneau, Alain
Barker, David G.
de Carvalho-Niebel, Fernanda
机构
[1] INRA, CNRS, Lab Plant Microbe Interact, Castanet Tolosan, France
[2] Inst Federatif Rech, F-31326 Castanet Tolosan, France
关键词
D O I
10.1105/tpc.107.052944
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rhizobium Nod factors (NFs) are specific lipochitooligosaccharides that activate host legume signaling pathways essential for initiating the nitrogen-fixing symbiotic association. This study describes the characterization of cis-regulatory elements and trans-interacting factors that regulate NF-dependent and epidermis-specific gene transcription in Medicago truncatula. Detailed analysis of the Mt ENOD11 promoter using deletion, mutation, and gain-of-function constructs has led to the identification of an NF-responsive regulatory unit (the NF box) sufficient to direct NF-elicited expression in root hairs. NF box mediated expression requires a major GCC-like motif, which is also essential for the binding of root hair-specific nuclear factors. Yeast one-hybrid screening has identified three closely related AP2/ERF transcription factors (ERN1 to ERN3) that are able to bind specifically to the NF box. ERN1 is identical to an ERF-like factor identified recently. Expression analysis has revealed that ERN1 and ERN2 genes are upregulated in root hairs following NF treatment and that this activation requires a functional NFP gene. Transient expression assays in Nicotiana benthamiana have further shown that nucleus-targeted ERN1 and ERN2 factors activate NF box-containing reporters, whereas ERN3 represses ERN1/ERN2-dependent transcription activation. A model is proposed for the fine-tuning of NF-elicited gene transcription in root hairs involving the interplay between repressor and activator ERN factors.
引用
收藏
页码:2866 / 2885
页数:20
相关论文
共 83 条
[11]   A role for the GCC-box in jasmonate-mediated activation of the PDF1.2 gene of Arabidopsis [J].
Brown, RL ;
Kazan, K ;
McGrath, KC ;
Maclean, DJ ;
Manners, JM .
PLANT PHYSIOLOGY, 2003, 132 (02) :1020-1032
[12]   Protein binding to the abscisic acid-responsive element is independent of VIVIPAROUS1 in vivo [J].
Busk, PK ;
Pagès, M .
PLANT CELL, 1997, 9 (12) :2261-2270
[13]   Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an ocs element binding protein [J].
Buttner, M ;
Singh, KB .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (11) :5961-5966
[14]   Four genes of Medicago truncatula controlling components of a nod factor transduction pathway [J].
Catoira, R ;
Galera, C ;
de Billy, F ;
Penmetsa, RV ;
Journet, EP ;
Maillet, F ;
Rosenberg, C ;
Cook, D ;
Gough, C ;
Dénarié, J .
PLANT CELL, 2000, 12 (09) :1647-1665
[15]   Pharmacological evidence that multiple phospholipid signaling pathways link rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses, including Ca2+ spiking and specific ENOD gene expression [J].
Charron, D ;
Pingret, JL ;
Chabaud, M ;
Journet, EP ;
Barker, DG .
PLANT PHYSIOLOGY, 2004, 136 (03) :3582-3593
[16]   Overexpression of oncoprotein 18 correlates with poor differentiation in lung adenocarcinomas [J].
Chen, G ;
Wang, H ;
Gharib, TG ;
Huang, CC ;
Thomas, DG ;
Shedden, KA ;
Kuick, R ;
Taylor, JMG ;
Kardia, SLR ;
Misek, DE ;
Giordano, TJ ;
Iannettoni, MD ;
Orringer, MB ;
Hanash, SM ;
Beer, DG .
MOLECULAR & CELLULAR PROTEOMICS, 2003, 2 (02) :107-116
[17]   TRANSIENT INDUCTION OF A PEROXIDASE GENE IN MEDICAGO-TRUNCATULA PRECEDES INFECTION BY RHIZOBIUM-MELILOTI [J].
COOK, D ;
DREYER, D ;
BONNET, D ;
HOWELL, M ;
NONY, E ;
VANDENBOSCH, K .
PLANT CELL, 1995, 7 (01) :43-55
[18]   Nod factor structures, responses, and perception during initiation of nodule development [J].
D'Haeze, W ;
Holsters, M .
GLYCOBIOLOGY, 2002, 12 (06) :79R-105R
[19]   The GAMYB protein from barley interacts with the DOF transcription factor BPBF and activates endosperm-specific genes during seed development [J].
Diaz, I ;
Vicente-Carbajosa, J ;
Abraham, Z ;
Martínez, M ;
Isabel-La Moneda, I ;
Carbonero, P .
PLANT JOURNAL, 2002, 29 (04) :453-464
[20]   A receptor kinase gene regulating symbiotic nodule development [J].
Endre, G ;
Kereszt, A ;
Kevei, Z ;
Mihacea, S ;
Kaló, P ;
Kiss, GB .
NATURE, 2002, 417 (6892) :962-966