Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obese Wistar rats

被引:78
作者
Pauli, Jose R. [1 ]
Ropelle, Eduardo R. [1 ]
Cintra, Dennys E. [1 ]
Carvalho-Filho, Marco A. [1 ]
Moraes, Juliana C. [1 ]
De Souza, Cldudio T. [1 ]
Velloso, Licio A. [1 ]
Carvalheira, Jose B. C. [1 ]
Saad, Mario J. A. [1 ]
机构
[1] Univ Estadual Campinas, FCM, Dept Clin Med, Campinas, SP, Brazil
来源
JOURNAL OF PHYSIOLOGY-LONDON | 2008年 / 586卷 / 02期
关键词
D O I
10.1113/jphysiol.2007.142414
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Early evidence demonstrates that exogenous nitric oxide (NO) and the NO produced by inducible nitric oxide synthase (iNOS) can induce insulin resistance. Here, we investigated whether this insulin resistance, mediated by S-nitrosation of proteins involved in early steps of the insulin signal transduction pathway, could be reversed by acute physical exercise. Rats on a high-fat diet were subjected to swimming for two 3 h-longbouts, separated by a 45 min rest period. Two or 16 h after the exercise protocol the rats were killed and proteins from the insulin signalling pathway were analysed by immunoprecipitation and immunoblotting. We demonstrated that a high-fat diet led to an increase in the iNOS protein level and S-nitrosation of insulin receptor beta(IR beta), insulin receptor substrate 1 (IRS1) and Akt. Interestingly, an acute bout of exercise reduced iNOS expression and S-nitrosation of proteins involved in the early steps of insulin action, and improved insulin sensitivity in diet-induced obesity rats. Furthermore, administration of GSNO (NO donor) prevents this improvement in insulin action and the use of an inhibitor of iNOS (L-N-6-(1-iminoethyl)lysine; L-NIL) simulates the effects of exercise on insulin action, insulin signalling and S-nitrosation of IR beta, IRS1 and Akt. In summary, a single bout of exercise reverses insulin sensitivity in diet-induced obese rats by improving the insulin signalling pathway, in parallel with a decrease in iNOS expression and in the S-nitrosation of IR/IRS1/Akt. The decrease in iNOS protein expression in the muscle of diet-induced obese rats after an acute bout of exercise was accompanied by an increase in AMP-activated protein kinase (AMPK) activity. These results provide new insights into the mechanism by which exercise restores insulin sensitivity.
引用
收藏
页码:659 / 671
页数:13
相关论文
共 47 条
[1]   Prior exercise increases phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle [J].
Arias, Edward B. ;
Kim, Junghoon ;
Funai, Katsuhiko ;
Cartee, Gregory D. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2007, 292 (04) :E1191-E1200
[2]   Evidence that nitric oxide increases glucose transport in skeletal muscle [J].
Balon, TW ;
Nadler, JL .
JOURNAL OF APPLIED PHYSIOLOGY, 1997, 82 (01) :359-363
[3]   Cytokines modulate glucose transport in skeletal muscle by inducing the expression of inducible nitric oxide synthase [J].
Bedard, S ;
Marcotte, B ;
Marette, A .
BIOCHEMICAL JOURNAL, 1997, 325 :487-493
[4]  
Betts J J, 1993, Obes Res, V1, P295
[5]   Previous exercise attenuates muscle sympathetic activity and increases blood flow during acute euglycemic hyperinsulinemia [J].
Bisquolo, VAF ;
Cardoso, CG ;
Ortega, KC ;
Gusmao, JL ;
Tinucci, T ;
Negrao, CE ;
Wajchenberg, BL ;
Mion, D ;
Forjaz, CLM .
JOURNAL OF APPLIED PHYSIOLOGY, 2005, 98 (03) :866-871
[6]   ESTIMATES OF INVIVO INSULIN ACTION IN MAN - COMPARISON OF INSULIN TOLERANCE-TESTS WITH EUGLYCEMIC AND HYPERGLYCEMIC GLUCOSE CLAMP STUDIES [J].
BONORA, E ;
MOGHETTI, P ;
ZANCANARO, C ;
CIGOLINI, M ;
QUERENA, M ;
CACCIATORI, V ;
CORGNATI, A ;
MUGGEO, M .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 1989, 68 (02) :374-378
[7]   Direct activation of the olfactory cyclic nucleotide-gated channel through modification of sulfhydryl groups by NO compounds [J].
Broillet, MC ;
Firestein, S .
NEURON, 1996, 16 (02) :377-385
[8]   Postexercise muscle glycogen resynthesis in obese insulin-resistant Zucker rats [J].
Bruce, CR ;
Lee, JS ;
Hawley, JA .
JOURNAL OF APPLIED PHYSIOLOGY, 2001, 91 (04) :1512-1519
[9]   S-nitrosation of the insulin receptor, insulin receptor substrate 1, and protein kinase B/Akt - A novel mechanism of insulin resistance (Publication with Expression of Concern) [J].
Carvalho, MA ;
Ueno, M ;
Hirabara, SM ;
Seabra, AB ;
Carvalheira, JBC ;
de Oliveira, MG ;
Velloso, LA ;
Curi, R ;
Saad, MJA .
DIABETES, 2005, 54 (04) :959-967
[10]   Targeted disruption of iNOS prevents LPS-induced S-nitrosation of IRβ/IRS-1 and Akt and insulin resistance in muscle of mice [J].
Carvalho-Filho, Marco A. ;
Ueno, Mirian ;
Carvalheira, Jose ' B. C. ;
Velloso, Licio A. ;
Saad, Mario J. A. .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2006, 291 (03) :E476-E482