Financial physics

被引:39
作者
Feigenbaum, J [1 ]
机构
[1] Univ Pittsburgh, Dept Econ, Pittsburgh, PA 15260 USA
关键词
D O I
10.1088/0034-4885/66/10/R02
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this introduction to the burgeoning field of econophysics, we review the application of self-organized criticality to economics, the Cont-Bouchaud percolation model, multiple-strategy agent-based models of financial markets, the minority game, and log-periodic precursors to financial crashes.
引用
收藏
页码:1611 / 1649
页数:39
相关论文
共 104 条
[91]  
SHILLER RJ, 1981, AM ECON REV, V71, P421
[92]  
Sornette D, 1996, J PHYS I, V6, P167, DOI 10.1051/jp1:1996135
[93]   Discrete-scale invariance and complex dimensions [J].
Sornette, D .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 297 (05) :239-270
[94]  
Sornette D., 2002, Quantitative Finance, V2, P468, DOI 10.1088/1469-7688/2/6/306
[95]   Finite-time singularity signature of hyperinflation [J].
Sornette, D ;
Takayasu, H ;
Zhou, WX .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 325 (3-4) :492-506
[96]   Theory of self-similar oscillatory finite-time singularities [J].
Sornette, D ;
Ide, K .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (03) :267-275
[97]  
Sornette D., 2001, Quantitative Finance, V1, P452, DOI 10.1088/1469-7688/1/4/305
[98]   Log-periodic oscillations for biased diffusion on random lattice [J].
Stauffer, D ;
Sornette, D .
PHYSICA A, 1998, 252 (3-4) :271-277
[99]   Crossover in the Cont-Bouchaud percolation model for market fluctuations [J].
Stauffer, D ;
Penna, TJP .
PHYSICA A, 1998, 256 (1-2) :284-290
[100]   Theory of molecular size distribution and gel formation in branched-chain polymers [J].
Stockmayer, WH .
JOURNAL OF CHEMICAL PHYSICS, 1943, 11 (02) :45-55