Metal Nanoparticle Wires Formed by an Integrated Nanomolding-Chemical Assembly Process: Fabrication and Properties

被引:18
作者
Duan, Xuexin [2 ,4 ]
Park, Myoung-Hwan [1 ]
Zhao, Yiping [2 ,3 ]
Berenschot, Erwin [3 ]
Wang, Zheyao [4 ]
Reinhoudt, David N. [2 ]
Rotello, Vincent M. [1 ]
Huskens, Jurriaan [2 ]
机构
[1] Univ Massachusetts, Dept Chem, Amherst, MA 01003 USA
[2] Univ Twente, MESA Inst Nanotechnol, Mol Nanofabricat Grp, NL-7500 AE Enschede, Netherlands
[3] Univ Twente, MESA Inst Nanotechnol, Transducers Sci & Technol Grp, NL-7500 AE Enschede, Netherlands
[4] Tsinghua Univ, Inst Microelect, Beijing 100084, Peoples R China
关键词
soft lithography; nanomolding in capillaries; nanoparticles; nanoparticle wires; conductance; ROOM-TEMPERATURE; GOLD; IMMOBILIZATION; TRANSPORT; SURFACES; POLYMER; ARRAYS;
D O I
10.1021/nn102463r
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We report here the use of nanomolding in capillaries (NAMIC) coupled with dithiocarbamate (DTC) chemistry to fabricate sub-50 nm quasi-1D arrays of 3.5 nm core gold nanoparticles (Au NPs) over large areas. Owing to chemical immobilization via the DTC bond, the patterned NP systems are stable in water and organic solvents, thus allowing the surface modification of the patterned Au NP arrays through thiol chemistry and further orthogonal binding of proteins. The electrical properties of these patterned Au NP wires have also been studied. Our results show that NAMIC combined with surface chemistry is a simple but powerful tool to create metal NP arrays that can potentially be applied to fabricate nanoelectronic or biosensing devices.
引用
收藏
页码:7660 / 7666
页数:7
相关论文
共 47 条
[31]   Electronic transport in metal nanocrystal arrays: The effect of structural disorder on scaling behavior [J].
Parthasarathy, R ;
Lin, XM ;
Jaeger, HM .
PHYSICAL REVIEW LETTERS, 2001, 87 (18) :186807-1
[32]   One-dimensional assemblies of charged nanoparticles in water: A simulation study [J].
Richardi, J. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (04)
[33]   Construction of highly conductive nanowires on a DNA template [J].
Richter, J ;
Mertig, M ;
Pompe, W ;
Mönch, I ;
Schackert, HK .
APPLIED PHYSICS LETTERS, 2001, 78 (04) :536-538
[34]   Nanoparticulated gold: Syntheses, structures, electronics, and reactivities [J].
Schmid, G ;
Corain, B .
EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2003, (17) :3081-3098
[35]   Polymer-mediated nanoparticle assembly: Structural control and applications [J].
Shenhar, R ;
Norsten, TB ;
Rotello, VM .
ADVANCED MATERIALS, 2005, 17 (06) :657-669
[36]  
Shipway AN, 2000, CHEMPHYSCHEM, V1, P18, DOI 10.1002/1439-7641(20000804)1:1<18::AID-CPHC18>3.0.CO
[37]  
2-L
[38]   A combined top-down/bottom-up approach to the microscopic localization of metallic nanodots [J].
Spatz, JP ;
Chan, VZH ;
Mössmer, S ;
Kamm, FM ;
Plettl, A ;
Ziemann, P ;
Möller, M .
ADVANCED MATERIALS, 2002, 14 (24) :1827-1832
[39]   One-dimensional assemblies of nanoparticles: Preparation, properties, and promise [J].
Tang, ZY ;
Kotov, NA .
ADVANCED MATERIALS, 2005, 17 (08) :951-962
[40]   Fabrication and electronic properties of gold nanoparticle superlattices [J].
Teranishi, T .
COMPTES RENDUS CHIMIE, 2003, 6 (8-10) :979-987